Ira, obj_name<- load("arun.RData") Pred1<- get(obj_name[1]) Actual1<- get(obj_name[2]) dat2<- data.frame(S1=rep(Pred1[,1],ncol(Pred1)-1),variable=rep(colnames(Pred1)[-1],each=nrow(Pred1)),Predict=unlist(Pred1[,-1],use.names=FALSE),Actual=unlist(Actual1[,-1],use.names=FALSE),stringsAsFactors=FALSE) dat2New<- dat2[!(is.na(dat2$Predict)|is.na(dat2$Actual)),] dat3<- dat2New[order(dat2New$S1,dat2New$Predict),] library(plyr) resLow<-ddply(dat3,.(S1),summarize, cbind(head(Predict,5),head(Actual,5))) resHigh<-ddply(dat3,.(S1),summarize, cbind(head(rev(Predict),5),head(rev(Actual),5))) resLow1<-data.frame(Date=resLow[,1],Predict=resLow[,2][,1],Actual=resLow[,2][,2]) resHigh1<-data.frame(Date=resHigh[,1],Predict=resHigh[,2][,1],Actual=resHigh[,2][,2]) resHigh1$id<- 1:nrow(resHigh1) resLow1$id<- 1:nrow(resLow1) resLow2<-resLow1[!resLow1[,2]>=0,] resHigh2<- resHigh1[resHigh1[,2]>0,] resFinal<- merge(resLow2,resHigh2,by=c("Date","id"),all=TRUE) resNew<- as.data.frame(matrix(0,nrow(resFinal)*2,3)) resNew[,1]<-rep(resFinal$Date,each=2) ###indexing is not that important here. You can just ?melt() or ?reshape() from wide to long format and when you try ddply(), it will automatically arrange the data #accordingly. indx<-cbind(rep(seq_len(nrow(resFinal)),2),rep(c(5,3),each=250)) ## 5,3 represents the column numbers Predict in resFinal indx2<-c(rep(seq(1,100,by=2),each=5),rep(seq(2,100,by=2),each=5)) indx3<- indx[order(indx2),] resNew[,2]<-as.numeric(resFinal[indx3]) indx1<-cbind(rep(seq_len(nrow(resFinal)),2),rep(c(6,4),each=250)) #6,4 represent the columns Actual in resFinal indx4<- indx1[order(indx2),] resNew[,3]<-as.numeric(resFinal[indx4]) colnames(resNew)<- c("Date","Predict","Actual") CorRes<-ddply(resNew,.(Date),summarize,Correl=cor(Predict,Actual,use="complete.obs")) head(CorRes) # Date Correl #1 2006-01-03 0.7079585 #2 2006-01-04 0.6537652 #3 2006-01-05 0.6397637 #4 2006-01-06 0.7448979 #5 2006-01-09 0.7325796 #6 2006-01-10 0.6283132 Arun ________________________________ From: Ira Sharenow <irasharenow...@yahoo.com> To: arun <smartpink...@yahoo.com> Sent: Thursday, September 26, 2013 11:22 PM Subject: Re: Update, September 26, 2013 Arun, I may want to separate the longs and do a correlation and separate the shorts and do a correlation, but the more likely scenario is to have the (possibly) 10 pairs of values per day all as part of a single correlation. Thanks. Ira ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.