Excerpts from Michael Friendly's message of 2016-05-10 14:45:28 -0400: > This is my first attempt to try R web scraping tools, for a project my > daughter is working on. It concerns a data base of projects in Sao > Paulo, Brazil, listed at > http://outorgaonerosa.prefeitura.sp.gov.br/relatorios/RelSituacaoGeralProcessos.aspx, > > but spread out over 69 pages accessed through a javascript menu at the > bottom of the page. > > Each web page contains 3 HTML tables, of which only the last contains > the relevant data. In this, only a subset of columns are of interest. > I tried using the XML package as illustrated on several tutorial pages, > as shown below. I have no idea how to automate this to extract these > tables from multiple web pages. Is there some other package better > suited to this task? Can someone help me solve this and other issues? > > # Goal: read the data tables contained on 69 pages generated by the link > below, where > # each page is generated by a javascript link in the menu of the bottom > of the page. > # > # Each "page" contains 3 html tables, with names "Table 1", "Table 2", > and the only one > # of interest with the data, "grdRelSitGeralProcessos" > # > # From each such table, extract the following columns: > #- Processo > #- Endereço > #- Distrito > #- Area terreno (m2) > #- Valor contrapartida ($) > #- Area excedente (m2) > > # NB: All of the numeric fields use "." as comma-separator and "," as > the decimal separator, > # but because of this are read in as character > > > library(XML) > link <- > "http://outorgaonerosa.prefeitura.sp.gov.br/relatorios/RelSituacaoGeralProcessos.aspx" > > saopaulo <- htmlParse(link) > saopaulo.tables <- readHTMLTable(saopaulo, stringsAsFactors = FALSE) > length(saopaulo.tables) > > # its the third table on this page we want > sp.tab <- saopaulo.tables[[3]] > > # columns wanted > wanted <- c(1, 2, 5, 7, 8, 13, 14) > head(sp.tab[, wanted]) > > > head(sp.tab[, wanted]) > Proposta Processo Endereço Distrito > 1 1 2002-0.148.242-4 R. DOMINGOS LOPES DA SILVA X R. CORNÉLIO > VAN CLEVE VILA ANDRADE > 2 2 2003-0.129.667-3 AV. DR. JOSÉ HIGINO, > 200 E 216 AGUA RASA > 3 3 2003-0.065.011-2 R. ALIANÇA LIBERAL, > 980 E 990 VILA LEOPOLDINA > 4 4 2003-0.165.806-0 R. ALIANÇA LIBERAL, > 880 E 886 VILA LEOPOLDINA > 5 5 2003-0.139.053-0 R. DR. JOSÉ DE ANDRADE > FIGUEIRA, 111 VILA ANDRADE > 6 6 2003-0.200.692-0 R. JOSÉ DE > JESUS, 66 VILA SONIA > Ãrea Terreno (m2) Ãrea Excedente (m2) Valor Contrapartida (R$) > 1 0,00 1.551,14 127.875,98 > 2 0,00 3.552,13 267.075,77 > 3 0,00 624,99 70.212,93 > 4 0,00 395,64 44.447,18 > 5 0,00 719,68 41.764,46 > 6 0,00 446,52 85.152,92 > > thanks, > > > -- > Michael Friendly Email: friendly AT yorku DOT ca > Professor, Psychology Dept. & Chair, Quantitative Methods > York University Voice: 416 736-2100 x66249 Fax: 416 736-5814 > 4700 Keele Street Web:http://www.datavis.ca > Toronto, ONT M3J 1P3 CANADA > > # what is missing to you ?gsub # aliasing df <- sp.tab[, wanted]
# convert to double as.double( # convert to double gsub(',', '.', # makes the ',' to become '.' gsub('\\.', '', df$"Área Excedente (m2)")) # get rid of the dot You can easily put the names of the columns and use lapply on them to convert all of them in same manner, that is left as an exercise. -- Marco Arthur @ (M)arco Creatives ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.