Hi Rosa,

you may take advantage of the extremevalues package.

https://cran.r-project.org/web/packages/extremevalues/extremevalues.pdf

An example:

set.seed(1023)
v3 <- c(rnorm(100, 0, 0.2), rnorm(5, 4, 0.1), rnorm(5, -4, 0.1))
v4 <- sample(v3, length(v3))
nam <- as.character(1:length(v4))
df <- data.frame(names = nam, values = v4)


library(extremevalues)

res <- getOutliersI(as.vector(df[,"values"]), FLim=c(0.001, 0.999), 
distribution="normal")

# indexes where outliers are located
res$iLeft
res$iRight

outliers_idx <- c(res$iLeft, res$iRight)

df_outliers <- data.frame(index= outliers_idx, values = 
df[outliers_idx,"values"])
df_outliers

outlierPlot(df[,"values"], L=res)


--

Best

GG



        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to