Hi Michael et al, I solved by myself simply running the code below.
Thanks anyway for the answers Alfredo t <- read.csv(file="C:\\Temp\\radio_survey.csv", header=TRUE, sep=",") t1 <- table(t$Preference, t$Sex) t2 <- table(t$Preference, t$Age) t3 <- table(t$Preference, t$Time) ct <- cbind(t1, t2, t3) ca <- ca(ct) -----Messaggio originale----- Da: Michael Friendly <frien...@yorku.ca> Inviato: sabato 30 marzo 2019 16:52 A: Alfredo <alfredo.rocc...@fastwebnet.it>; r-help@R-project.org Oggetto: Re: Structuring data for Correspondence Analysis I think something like table(Preference, Sex, data=table) will get you started. With 3+ variables, you are probably looking for a MCA analysis or simple CA using the stacked approach. Your SAS table statement, table Preference, Sex Age Time; treats Preference vs. all combinations of Sex, Age & Time. This corresponds to a loglinear model asserting Preference is jointly independent of the other three. See the vignette for the vcdExtra package for this kind of thing more generally. install.packages("vcdExtra") browseVignettes("vcdExtra") See my book, Discrete Data Analysis with R, <http://ddar.datavis.ca/> http://ddar.datavis.ca/ best, -Michael On 3/29/2019 9:35 AM, Alfredo wrote: > Hi, I am very new to r and need help from you to do a correspondence > analysis because I don't know how to structure the following data: > > Thank you. > > Alfredo > > > > library(ca,lib.loc=folder) > > table <- read.csv(file="C:\\Temp\\Survey_Data.csv", header=TRUE, > sep=",") > > head (table, n=20) > > Preference Sex Age Time > > 1 News/Info/Talk M 25-30 06-09 > > 2 Classical F >35 09-12 > > 3 Rock and Top 40 F 21-25 12-13 > > 4 Jazz M >35 13-16 > > 5 News/Info/Talk F 25-30 16-18 > > 6 Don't listen F 30-35 18-20 > > ... > > 19 Rock and Top 40 M 25-30 16-18 > > 20 Easy Listening F >35 18-20 > > > > In SAS I would simply do this: > > proc corresp data=table dim=2 outc=_coord; > > table Preference, Sex Age Time; > > run; > > > > I don't know how convert in R a data frame to a frequency table to > execute properly this function: > > ca <- ca(<frequency table>, graph=FALSE) > > > [[alternative HTML version deleted]] > -- Michael Friendly Email: friendly AT yorku DOT ca Professor, Psychology Dept. & Chair, ASA Statistical Graphics Section York University Voice: 416 736-2100 x66249 Fax: 416 736-5814 4700 Keele Street Web: <http://www.datavis.ca> http://www.datavis.ca | @datavisFriendly Toronto, ONT M3J 1P3 CANADA [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.