a) you should put values for Ca, Cb, Cc directly into the data list as data=list(Ca=1, ....
b) you can simplify the call to # idealised data set aDF <- data.frame( x= c(1.80, 9.27, 6.48, 2.61, 9.86, 5.93, 6.76, 5.52, 6.06, 8.62), y= c(24.77, 2775.07, 895.15, 60.73, 3373.57, 677.82, 1021.92, 542.84, 725.25, 2200.04)) bFunc <- function(x, Cd) cbind(Ca=1,Cb=x, Cc=x^Cd) # nls, plinear algorithm, RHS from function nls(y ~ bFunc(x, Cd), data=list(x=aDF$x, y=aDF$y), start=list(Cd=3), algorithm="plinear") On Thu, 2 Oct 2008, Keith Jewell wrote: > Dear R gurus, > > As part of finding initial values for a much more complicated fit I want to > fit a function of the form y ~ a + bx + cx^d to fairly "noisy" data and have > hit some problems. > > To demonstrate the specific R-related problem, here is an idealised data > set, smaller and better fitting than reality: > # idealised data set > aDF <- data.frame( x= c(1.80, 9.27, 6.48, 2.61, 9.86, 5.93, 6.76, 5.52, > 6.06, 8.62), > y= c(24.77, 2775.07, 895.15, 60.73, 3373.57, 677.82, 1021.92, 542.84, > 725.25, 2200.04)) > > And here are some starting values, far better than I'd have in reality > # good starting values > startL <- list(Ca=4, Cb=3, Cc=3, Cd=3) > > In these idealised circumstances nls converges using the default algorithm. > # nls, default algorithm > nls(y ~ Ca + Cb*x + Cc*x^Cd, data=aDF, start=startL) > > Unfortunately, in reality it often fails to converge. This model is linear > in a, b and c so I've used the plinear algorithm. > # nls, plinear algorithm, explicit RHS > nls(y ~ cbind(Ca=1,Cb=x, Cc=x^Cd), data=aDF, start=startL["Cd"], > algorithm="plinear") > > This converges much more often but sometimes crashes with the error message > "Error in numericDeriv(form[[3]], names(ind), env) : > Missing value or an infinity produced when evaluating the model" > > I deduce that it is failing in the numerical differentiation of x^Cd (but > don't know why), so I thought I'd avoid the numerical differentiation by > putting the RHS in a function to which I could (later) add a 'gradient' > attribute > # function to provide RHS > bFunc <- function(x, Ca, Cb, Cc, Cd) cbind(Ca=1,Cb=x, Cc=x^Cd) > > # nls, plinear algorithm, RHS from function > nls(y ~ bFunc(x, Ca, Cb, Cc, Cd), data=aDF, start=startL["Cd"], > algorithm="plinear") > > However, this gives me > "Error in nls(y ~ bFunc(x, Ca, Cb, Cc, Cd), data = aDF, start = > startL["Cd"], : > parameters without starting value in 'data': Ca, Cb, Cc" > > Can anyone tell me > a) why putting the RHS into a function "broke" the plinear algorithm > b) if there's a better approach to my problem > > Thanks in advance, > > Keith Jewell > ----------------- > I'm using V2.7.2... > > sessionInfo() > R version 2.7.2 (2008-08-25) > i386-pc-mingw32 > > locale: > LC_COLLATE=English_United Kingdom.1252;LC_CTYPE=English_United > Kingdom.1252;LC_MONETARY=English_United > Kingdom.1252;LC_NUMERIC=C;LC_TIME=English_United Kingdom.1252 > > attached base packages: > [1] stats graphics grDevices datasets tcltk utils methods > base > > other attached packages: > [1] xlsReadWrite_1.3.2 svSocket_0.9-5 TinnR_1.0.2 R2HTML_1.59 > Hmisc_3.4-3 > > loaded via a namespace (and not attached): > [1] cluster_1.11.11 grid_2.7.2 lattice_0.17-14 svMisc_0.9-5 > VGAM_0.7-7 > > ... but have also tried todays V2.7.2 patched and V2.8.0alpha, both of which > give the same behaviour > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.