Dear list,

I have a data.frame with x, y values and a 3-level factor "group", say. I want to create a new column in this data.frame with the values of y scaled to 1 by group. Perhaps the example below describes it best:

x <- seq(0, 10, len=100)
my.df <- data.frame(x = rep(x, 3), y=c(3*sin(x), 2*cos(x), cos(2*x)), # note how the y values have a different maximum depending on the group
        group = factor(rep(c("sin", "cos", "cos2"), each=100)))
library(reshape)        
df.melt <- melt(my.df, id=c("x","group")) # make a long format
df.melt <- df.melt[ order(df.melt$group) ,] # order the data.frame by the group factor df.melt$norm <- do.call(c, tapply(df.melt$value, df.melt$group, function(.v) {.v / max(.v)})) # calculate the normalised value per group and assign it to a new column
library(lattice)
xyplot(norm + value ~ x,groups=group, data=df.melt, auto.key=T) # check that it worked


This procedure works, but it feels like I'm reinventing the wheel using hammer and saw. I tried to use aggregate, by, ddply (plyr package), but I coudn't find anything straight-forward.

I'll appreciate any input,

Baptiste





_____________________________

Baptiste AuguiƩ

School of Physics
University of Exeter
Stocker Road,
Exeter, Devon,
EX4 4QL, UK

Phone: +44 1392 264187

http://newton.ex.ac.uk/research/emag

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to