Simon, thanks for your reply and your suggestions. 
 
I fitted the following glmm's 
 
gamm3<-try(glmmPQL(count~offset(offsetter)+poly(lon,3)*poly(lat,3),random=list(code_tripnr=~1),family="poisson"))
 
Which worked OK (see summary below)
 
I also fitted a model using quasipoisson, but that didn't help. I actually also 
thought that glmmPQL and gamm estimate the dispersion parameter and hence 
assumes a quasipoisson distribution, even if you specify poisson. Is that 
correct?
 
Finally I tried fitting a model to less data, and sometimes gamm managed to 
converge (see summary below). 
So would it be possible to use the parameter estimates from the model fitted to 
less data as starting values for the gamm fitted to the full data set? 
Or do you have any other suggestions?
 
Thanks.
Cheers Geert
 
 
 
 
 
>  
gamm3<-try(glmmPQL(count~offset(offsetter)+poly(lon,3)*poly(lat,3),random=list(code_tripnr=~1),f
 
amily="poisson"))
 
 
 
iteration
1
 
iteration
2
 
iteration
3
 
>   detach(Disc_age)
 
>
summary(gamm3)
 
Linear
mixed-effects model fit by maximum likelihood
 
 Data: NULL
 
  AIC BIC logLik
 
   NA  NA    
NA
 
 
 
Random
effects:
 
 Formula: ~1 | code_tripnr
 
        (Intercept) Residual
 
StdDev:
0.001391914 231.9744
 
 
 
Variance
function:
 
 Structure: fixed weights
 
 Formula: ~invwt
 
Fixed
effects: count ~ offset(offsetter) + poly(lon, 3) * poly(lat, 3)
 
                                Value
Std.Error   DF     t-value p-value
 
(Intercept)                    -1.582     11.96 2024 -0.13232174  0.8947
 
poly(lon,
3)1                  -4.048   1397.33 2024 -0.00289673  0.9977
 
poly(lon,
3)2                 -22.013    699.71 2024 -0.03145996  0.9749
 
poly(lon,
3)3                  -8.538    593.87 2024 -0.01437683  0.9885
 
poly(lat,
3)1                -109.624    666.05 2024 -0.16458856  0.8693
 
poly(lat,
3)2                -104.179    381.37 2024 -0.27316977  0.7848
 
poly(lat,
3)3                 -10.661    221.93 2024 -0.04803585  0.9617
 
poly(lon,
3)1:poly(lat, 3)1  4290.737  61369.98 2024 
0.06991589  0.9443
 
poly(lon,
3)2:poly(lat, 3)1  1853.559  36835.63 2024 
0.05031972  0.9599
 
poly(lon,
3)3:poly(lat, 3)1  -240.521  25771.80 2024 -0.00933272  0.9926
 
poly(lon,
3)1:poly(lat, 3)2  2540.147  41378.38 2024 
0.06138826  0.9511
 
poly(lon,
3)1:poly(lat, 3)2  2540.147  41378.38 2024 
0.06138826  0.9511
 
poly(lon,
3)2:poly(lat, 3)2 -1803.911  21522.17
2024 -0.08381643  0.9332
 
poly(lon,
3)3:poly(lat, 3)2  1040.858  16352.56 2024 
0.06365109  0.9493
 
poly(lon,
3)1:poly(lat, 3)3   632.587  12180.28 2024 
0.05193535  0.9586
 
poly(lon,
3)2:poly(lat, 3)3  -394.339  13088.72 2024 -0.03012818  0.9760
 
poly(lon,
3)3:poly(lat, 3)3  -543.502   6221.71 2024 -0.08735569  0.9304
 
 Correlation:
 
                            (Intr) ply(ln,3)1
ply(ln,3)2 ply(ln,3)3 ply(lt,3)1
 
poly(lon,
3)1                0.889
 
poly(lon,
3)2                0.938  0.878
 
poly(lon,
3)3                0.843  0.981     
0.792
 
poly(lat,
3)1               -0.829 -0.949     -0.906    
-0.882
 
poly(lat,
3)2                0.859  0.578      0.742     
0.538     -0.474
 
poly(lat,
3)3               -0.552 -0.783     -0.579    
-0.756      0.837
 
poly(lon,
3)1:poly(lat, 3)1 -0.947 -0.974    
-0.940     -0.940      0.925
 
poly(lon,
3)2:poly(lat, 3)1 -0.934 -0.950    
-0.857     -0.929      0.881
 
poly(lon,
3)3:poly(lat, 3)1 -0.818 -0.963    
-0.866     -0.945      0.931
 
poly(lon,
3)1:poly(lat, 3)2  0.808  0.975     
0.784      0.968     -0.928
 
poly(lon,
3)2:poly(lat, 3)2  0.737  0.575     
0.853      0.465     -0.659
 
poly(lon,
3)3:poly(lat, 3)2  0.735  0.896     
0.647      0.938     -0.765
 
poly(lon,
3)1:poly(lat, 3)3 -0.794 -0.592    
-0.823     -0.518      0.591
 
poly(lon,
3)2:poly(lat, 3)3 -0.542 -0.737    
-0.419     -0.781      0.635
 
poly(lon,
3)3:poly(lat, 3)3 -0.398 -0.383    
-0.534     -0.334      0.425
 
                            ply(lt,3)2
ply(lt,3)3 p(,3)1:(,3)1 p(,3)2:(,3)1
 
poly(lon,
3)1
 
poly(lon,
3)2
 
poly(lon,
3)3
 
poly(lat,
3)1
 
poly(lat,
3)2
 
poly(lat,
3)3               -0.136
 
poly(lon,
3)1:poly(lat, 3)1 -0.708      0.690
 
poly(lon,
3)2:poly(lat, 3)1 -0.701      0.710      0.933
 
poly(lon,
3)3:poly(lat, 3)1 -0.499      0.738      0.956        0.849
 
poly(lon,
3)1:poly(lat, 3)2  0.458     -0.845    
-0.915       -0.934
 
poly(lon,
3)2:poly(lat, 3)2  0.683     -0.344    
-0.719       -0.522
 
poly(lon,
3)2:poly(lat, 3)2  0.683     -0.344    
-0.719       -0.522
 
poly(lon,
3)3:poly(lat, 3)2  0.464     -0.655    
-0.834       -0.884
 
poly(lon,
3)1:poly(lat, 3)3 -0.823      0.241      0.752        0.594
 
poly(lon,
3)2:poly(lat, 3)3 -0.300      0.707      0.612        0.788
 
poly(lon,
3)3:poly(lat, 3)3 -0.266      0.148      0.493        0.250
 
                            p(,3)3:(,3)1
p(,3)1:(,3)2 p(,3)2:(,3)2 p(,3)3:(,3)2
 
poly(lon,
3)1
 
poly(lon,
3)2
 
poly(lon,
3)3
 
poly(lat,
3)1
 
poly(lat,
3)2
 
poly(lat,
3)3
 
poly(lon,
3)1:poly(lat, 3)1
 
poly(lon,
3)2:poly(lat, 3)1
 
poly(lon,
3)3:poly(lat, 3)1
 
poly(lon,
3)1:poly(lat, 3)2 -0.928
 
poly(lon,
3)2:poly(lat, 3)2 -0.637        0.432
 
poly(lon,
3)3:poly(lat, 3)2 -0.851       
0.935        0.245
 
poly(lon,
3)1:poly(lat, 3)3  0.642       -0.482       -0.894       -0.410
 
poly(lon,
3)2:poly(lat, 3)3  0.609       -0.822        0.007       -0.847
 
poly(lon,
3)3:poly(lat, 3)3  0.551       -0.327       -0.637       -0.291
 
                            p(,3)1:(,3)3
p(,3)2:(,3)3
 
poly(lon,
3)1
 
poly(lon,
3)2
 
poly(lon,
3)3
 
poly(lat,
3)1
 
poly(lat,
3)2
 
poly(lat,
3)3
 
poly(lon,
3)1:poly(lat, 3)1
 
poly(lon,
3)2:poly(lat, 3)1
 
poly(lon,
3)3:poly(lat, 3)1
 
poly(lon,
3)1:poly(lat, 3)2
 
poly(lon,
3)2:poly(lat, 3)2
 
poly(lon,
3)3:poly(lat, 3)2
 
poly(lon,
3)1:poly(lat, 3)3
 
poly(lon,
3)3:poly(lat, 3)1
 
poly(lon,
3)1:poly(lat, 3)2
 
poly(lon,
3)2:poly(lat, 3)2
 
poly(lon,
3)3:poly(lat, 3)2
 
poly(lon,
3)1:poly(lat, 3)3
 
poly(lon,
3)2:poly(lat, 3)3  0.080
 
poly(lon,
3)3:poly(lat, 3)3  0.684       -0.180
 
 
 
Standardized
Within-Group Residuals:
 
         Min           Q1          Med           Q3          Max
 
-0.504980771 -0.000866948 
0.028470924  0.078583094
33.247831244
 
 
 
Number
of Observations: 2113
 
Number
of Groups: 74
 
 
 
 
 
 
 
gamm3<-try(gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),family="quasipoisson",
niterPQL=200))
 
  
 
>
summary(gamm3$gam)
 
 
 
Family:
quasipoisson
 
Link
function: log
 
 
 
Formula:
 
count
~ offset(offsetter) + s(lon, lat)
 
 
 
Parametric
coefficients:
 
  Estimate Std. Error t value Pr(>|t|)
 
X  1.31370   
0.09854   13.33    
 
 
 
>
summary(gamm3$lme)
 
Linear
mixed-effects model fit by maximum likelihood
 
 Data: data
 
       AIC     
BIC    logLik
 
  2808.398 2837.845 -1398.199
 
 
 
Random
effects:
 
 Formula: ~Xr.1 - 1 | g.1
 
 Structure: pdIdnot
 
           Xr.11    Xr.12   
Xr.13    Xr.14    Xr.15   
Xr.16    Xr.17    Xr.18
 
StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623
 
           Xr.19   Xr.110  
Xr.111   Xr.112   Xr.113  
Xr.114   Xr.115   Xr.116
 
StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623
 
          Xr.117   Xr.118  
Xr.119   Xr.120   Xr.121  
Xr.122   Xr.123   Xr.124
 
StdDev:
12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623 12.49623
 
          Xr.125   Xr.126  
Xr.127
 
StdDev:
12.49623 12.49623 12.49623
 
 
 
 Formula: ~1 | code_tripnr %in% g.1
 
        (Intercept) Residual
 
StdDev:   0.8132693 5.077804
 
 
 
Variance
function:
 
 Structure: fixed weights
 
 Formula: ~invwt
 
Fixed
effects: list(fixed)
 
                    Value  Std.Error 
DF   t-value p-value
 
XX              1.3137042 0.09863463 923
13.318894  0.0000
 
Xs(lon,lat)Fx1
-0.4406352 0.23114503 923 -1.906315 
0.0569
 
Xs(lon,lat)Fx2
-0.6217519 0.24918031 923 -2.495189  0.0128
 
 Correlation:
 
               XX     X(,)F1
 
Xs(lon,lat)Fx1  0.015
 
Xs(lon,lat)Fx2
-0.009 -0.148
 
 
 
Standardized
Within-Group Residuals:
 
        Min          Q1         Med          Q3         Max
 
-3.42951750 -0.37448354 
0.06432438  0.53690322  8.62026552
 
 
 
Number
of Observations: 1000
 
Number
of Groups:
 
                 g.1 code_tripnr %in% g.1
 
                   1                   75
 
> 
 
 
 
 

----------------------------------------
> From: s.w...@bath.ac.uk
> To: r-help@r-project.org
> Date: Fri, 23 Jan 2009 11:32:21 +0000
> Subject: Re: [R] convergence problem gamm / lme
>
> Geert,
>
> Can you get a simpler model with, say, a quadratic dependence on lon, lat to
> converge, using glmmPQL? The answer might give a clue about whether the issue
> is related to using a smoother, or is something more basic.
>
> How confident are you that the Poisson assumption is reasonable?
>
> Can the model be fitted to a random subsample of the data, or does it always
> fail? PQL can fail to converge, but it's usually not as obstinate as it seems
> to be in this case, if the model structure is reasonable and identifiable.
>
> best,
> Simon
>
>
>
>
>
> On Thursday 22 January 2009 15:52, geert aarts wrote:
>> Hope one of you could help with the following question/problem:
>> We would like to explain the spatial
>> distribution of juvenile fish. We have 2135 records, from 75 vessels
>> (code_tripnr) and 7 to 39 observations for each vessel, hence the random
>> effect for code_tripnr. The offset (�offsetter�) accounts for the haul
>> duration and sub sampling factor. There are no extreme outliers in lat/lon.
>> The model we try to fit is:
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>> We tried several things. We added some
>> noise to lon and lat, modelled the density instead of using a count with
>> model offset, and we normalized the explanatory variables. We also changed
>> several settings (see models below).
>>
>>
>>
>> Interestingly, we do manage to fit a more
>> complex model:
>>
>> gamm2<-gamm(count~offset(offsetter)+
>> s(lat,lon,year,dayofyear), random=list(code_tripnr=~1),family="poisson",
>> correlation = corGaus(0.1, form=~lat + lon))
>>
>>
>>
>> The models are fitted using mgcv 1.4-1 and
>> R 2.7.1 on a 64Bits Debian OS.
>>
>>
>>
>> So there seems to be a convergence problem, correct? And does someone have
>> an idea what might cause this? Secondly are there some tricks/solutions.
>> E.g. perhaps we could use the results from the more complex model (gamm2
>> above), but I do not know exactly how. All help/advice would be greatly
>> appreciated.
>>
>>
>>
>> Kind regards, Geert
>>
>>
>>
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),
>> random=list(code_tripnr=~1),family="poisson", correlation = corExp(1,
>> form=~X + Y),nite
>>
>> rPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in recalc.corSpatial(object[[i]],
>> conLin) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(1,1)),random=list(code_
>>>tripnr=~1),family="poisson",
>>
>> niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>> nlminb
>> problem, convergence error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>>
>>
>>
>>
>> .Options$mgcv.vc.logrange=0.001 # we also
>> tried higher settings
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200, control=lmeControl(opt="optim"))
>>
>>
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in optim(c(coef(lmeSt)),
>> function(lmePars) -logLik(lmeSt, lmePars),
>>
>>
>>
>> initial value in 'vmmin' is not finite
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200,control=lmeControl(minAbsParApV
>>
>> ar=0.0000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in recalc.corSpatial(object[[i]],
>> conLin) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(1,1)),random=list(code_tr
>>ipnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>>
>> nlminb problem, convergence
>> error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In smooth.construct.tp.smooth.spec(object,
>> dk$data, dk$knots) :
>>
>>
>> basis dimension, k, increased to minimum possible
>>
>>
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(8,8)),random=list(code_tr
>>ipnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in lme.formula(fixed = fixed, random
>> = random, data = data, correlation = correlation, :
>>
>>
>> nlminb problem, convergence
>> error code = 1
>>
>>
>> message = false convergence (8)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In 1:UZ.len : numerical expression has 2
>> elements: only the first used
>>
>> 3: In if (p.rank> ncol(XZ)) p.rank
>> <- ncol(XZ) :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 4: In 1:p.rank : numerical expression has 2
>> elements: only the first used
>>
>> 5: In if (p.rank < k - j) Xf <- XZU[,
>> (p.rank + 1):(k - j), drop = FALSE] else Xf <- matrix(0, :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 6: In (p.rank + 1):(k - j) :
>>
>>
>> numerical expression has 2 elements: only the first used
>>
>> 7: In 1:p.rank : numerical expression has 2
>> elements: only the first used
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat,k=c(4,4),fx=T),random=list(co
>>de_tripnr=~1),family="poisson", niterPQL=200)
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>> In addition: Warning messages:
>>
>> 1: In if (k < M + 1) { :
>>
>> the
>> condition has length> 1 and only the first element will be used
>>
>> 2: In 1:UZ.len : numerical expression has 2
>> elements: only the first used
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+te(lon,lat),random=list(code_tripnr=~1)
>>,family="poisson", niterPQL=200,control=lmeControl(opt="opti
>>
>> m"))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in optim(c(coef(lmeSt)),
>> function(lmePars) -logLik(lmeSt, lmePars),
>>
>>
>>
>> initial value in 'vmmin' is not finite
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200,control=lmeControl(tolerance=
>>
>> 0.00000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1
>>>),family="poisson",
>>
>> niterPQL=200,control=lmeControl(niterEM=200))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(msTol=0.00000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(.relStep=0.00000000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(nlmStepMax=0.00000000000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson",
>> niterPQL=200,control=lmeControl(minAbsParApVar=0.0000000000001))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> NA/NaN/Inf in foreign function call (arg 1)
>>
>>
>>
>>
>> gamm3<-gamm(count~offset(offsetter)+s(lon,lat),random=list(code_tripnr=~1),
>>family="poisson", niterPQL=200, control=lmeControl(returnObject=T))
>>
>> Maximum number of PQL iterations: 200
>>
>> iteration 1
>>
>> iteration 2
>>
>> Error in MEestimate(lmeSt, grps) :
>>
>>
>> Singularity in backsolve at level 0, block 1
>>
>> In addition: Warning messages:
>>
>> 1: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 2: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 3: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 4: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 5: In logLik.reStruct(object, conLin) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>> 6: In MEestimate(lmeSt, grps) :
>>
>>
>> Singular precision matrix in level -1, block 1
>>
>>
>> _________________________________________________________________
>>
>>
>> [[alternative HTML version deleted]]
>
> --
>> Simon Wood, Mathematical Sciences, University of Bath, Bath, BA2 7AY UK
>> +44 1225 386603 www.maths.bath.ac.uk/~sw283
>

_________________________________________________________________
De leukste online filmpjes vind je op MSN Video!
http://video.msn.com/video.aspx?mkt=nl-nl
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to