Dear Christoph,

I done that and more. You'll find the functions below my signature. It
is mainly based on stepAIC from MASS. But it does more.

AICc = c(TRUE, FALSE) determines whether to use AICc or AIC

Furthermore it does not only refines the 'best' model but all good
models. A good model is defined as a model which has a AIC(c) values
that differs less that delta from the best model. Delta is by default 2,
but you can set it yourself. Delta = 0 would do the same thing a stepAIC
from MASS. Bandwidth controles the minimum number of models to refine.
Bandwidth = 10 will refine the 10 best models, regardless of AIC.

Marginal is a named list to indicate marginality. marginal = list(A =
c("B", "C"), B = "C") means that A can only enter the model if B and C
are present and B can only enter the model if C is present. Likewise B
can only leave the model is A is not present and C if A nor B are
present.

joint allows to specify variables that must enter or leave the model
simultaneous. joint = list(c("X", "Y"), c("SinX", "CosX"))

HTH,

Thierry

------------------------------------------------------------------------
----
ir. Thierry Onkelinx
Instituut voor natuur- en bosonderzoek / Research Institute for Nature
and Forest
Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
methodology and quality assurance
Gaverstraat 4
9500 Geraardsbergen
Belgium 
tel. + 32 54/436 185
thierry.onkel...@inbo.be 
www.inbo.be 

To call in the statistician after the experiment is done may be no more
than asking him to perform a post-mortem examination: he may be able to
say what the experiment died of.
~ Sir Ronald Aylmer Fisher

The plural of anecdote is not data.
~ Roger Brinner

The combination of some data and an aching desire for an answer does not
ensure that a reasonable answer can be extracted from a given body of
data.
~ John Tukey


stepAIC <- function (object, scope, scale = 0, direction = c("both",
"backward", "forward"), trace = 1, steps = 1000, use.start = FALSE, k =
2, bandwidth = 10, marginal = NULL, AICc = TRUE, delta = 2, joint =
NULL, positive.definite = FALSE, ...){
    mydeviance <- function(x, ...) {
        dev <- deviance(x)
        if (!is.null(dev)){
            dev
        } else {
            extractAIC(x, k = 0)[2]
        }
    }
    cut.string <- function(string) {
        if (length(string) > 1){
            string[-1] <- paste("\n", string[-1], sep = "")
        }
        string
    }
    Terms <- terms(object)
    object$formula <- Terms
    if (inherits(object, "lme")){
        object$call$fixed <- Terms
    } else {
        if (inherits(object, "gls")){
            object$call$model <- Terms
        } else {
            object$call$formula <- Terms
        }
    }
    if (use.start){
        warning("'use.start' cannot be used with R's version of glm")
    }
    md <- missing(direction)
    direction <- match.arg(direction)
    backward <- direction == "both" | direction == "backward"
    forward <- direction == "both" | direction == "forward"
    if (missing(scope)) {
        fdrop <- numeric(0)
        fadd <- attr(Terms, "factors")
        if (md){
            forward <- FALSE
        }
    } else {
        if (is.list(scope)) {
            if(!is.null(fdrop <- scope$lower)){
                fdrop <- attr(terms(update.formula(object, fdrop)),
"factors")
                colnames(fdrop) <- sapply(strsplit(colnames(fdrop), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":"))
                fdrop <- fdrop[, order(colnames(fdrop))]
            } else {
              fdrop <- numeric(0)
            }
            if (!is.null(fadd <- scope$upper)){
                fadd <- attr(terms(update.formula(object, fadd)),
"factors")
                colnames(fadd) <- sapply(strsplit(colnames(fadd), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":"))
                fadd <- fadd[, order(colnames(fadd))]
            }
        } else {
            if (!is.null(fadd <- scope)){
                fadd <- attr(terms(update.formula(object, scope)),
"factors")
                colnames(fadd) <- sapply(strsplit(colnames(fadd), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":"))
                fadd <- fadd[, order(colnames(fadd))]
            }
            fdrop <- numeric(0)
        }
    }
    models <- vector("list", steps)
    if (is.list(object) && (nmm <- match("nobs", names(object), 0)) > 0)
{
        n <- object[[nmm]]
    } else {
        n <- length(residuals(object))
    }
    fit <- object
        bAIC <- extractAIC(fit, scale, k = k, ...)
#       bAIC <- extractAIC(fit, scale, k = k)
        edf <- bAIC[1]
    if(AICc){
        bAIC <- bAIC[2] + (2 * edf + (edf * 1)) / (n - edf - 1)
    } else {
        bAIC <- bAIC[2]
    }
    if (is.na(bAIC)){
        stop("AIC is not defined for this model, so stepAIC cannot
proceed")
    }
    Terms <- terms(fit)
# reorder the covariates in alphabetical order
    response <- as.list(attr(Terms, "variables"))[[attr(Terms,
"response") + 1]]
    if(length(attr(Terms, "factors")) > 0){
        fixed <- sort(sapply(strsplit(colnames(attr(Terms, "factors")),
":", fixed = TRUE), function(x) paste(sort(x), collapse = ":")))
        fixed <- paste(c(rownames(attr(Terms, "factors"))[attr(Terms,
"offset")], fixed), collapse = " + ")
        fit <- update(fit, as.formula(paste(response, fixed, sep = " ~
")), evaluate = FALSE)
        fit <- eval.parent(fit)
    } else {
        fixed <- "1"
    }
    Terms <- terms(fit)
    nm <- 1
#append the basic model to the list of the results
    models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n - edf,
AIC = bAIC, formula = paste(response, fixed, sep = " ~ "), expanded =
FALSE, object = fit)
    bestAIC <- bAIC
    selection <- 1
    while (nm < steps & length(selection) > 0) {
#create a list of formulas which have to be expanded
        formulas <- sapply(models[selection], function(x){x$formula})
#create a vector with AIC values of the model to be expanded.
        cAIC <- sapply(models[selection], function(x){x$AIC})
        if(trace >= 1){
            cat("\n")
            cat(nm, "models tested.\n")
            if(length(cAIC) > 1){
                cat(length(cAIC), "models to expand. AIC range:",
round(range(cAIC[is.finite(cAIC)], na.rm = TRUE), 3), "\n\n")
            } else {
                cat("1 model to expand.\n\n")
            }
        }
#set the expanded flag on the models selected to expand
        models[selection] <- lapply(models[selection], function(x){
            x$expanded <- TRUE
            if(is.infinite(x$AIC)){
                x$AIC <- NA
            }
            x
        })
#expand each selected model
        for(i in seq_along(formulas)){
            form <- formulas[i]
            if(trace >= 2){
                cat("Expand model", i, "\n",
cut.string(deparse(as.vector(formula(form)))), "\nAIC:",
round(cAIC[[i]], 3), " Best AIC:", round(bestAIC, 3), "AIC range:",
round(range(cAIC[is.finite(cAIC)], na.rm = TRUE), 3), "\n\n")
                utils::flush.console()
            }
#select the terms which can be added of dropped
            Terms <- terms(as.formula(form))
            ffac <- attr(Terms, "factors")
            if (!is.null(sp <- attr(Terms, "specials")) && !is.null(st
<- sp$strata)){
                ffac <- ffac[-st, ]
            }
            scope <- factor.scope(ffac, list(add = fadd, drop = fdrop),
marginal = marginal, joint = joint)
#to backward selection
            if (backward && length(scope$drop)) {
#create all formulas of smaller models
                rhs <- sapply(scope$drop, function(x){
                    newForm <- update.formula(form, as.formula(paste(".
~ . ", x, sep = "-")))
                                        if(length(attr(terms(newForm),
"factors")) == 0){
                                                paste(response,
paste(c(rownames(attr(Terms, "factors"))[attr(Terms, "offset")], 1),
collapse = " + "), sep = " ~ ")
                                        } else {
                            if(ncol(attr(terms(newForm), "factors")) >
1){
                                fixed <-
paste(sort(sapply(strsplit(colnames(attr(terms(newForm), "factors")),
":", fixed = TRUE), function(x) paste(sort(x), collapse = ":"))),
collapse = " + ")
                                paste(response,
paste(c(rownames(attr(Terms, "factors"))[attr(Terms, "offset")], fixed),
collapse = " + "), sep = " ~ ")
                            } else {
                                paste(response,
paste(c(rownames(attr(Terms, "factors"))[attr(Terms, "offset")], 1),
collapse = " + "), sep = " ~ ")
                            }
                                        }
                })
#ignor smaller models which have allready been calculated
                scope$drop <- scope$drop[sapply(rhs, function(rhst){
                    all(sapply(models[seq_len(nm)], function(x){
                        x$formula != rhst
                    }))
                })]
#drop all suitable terms one by one
                if(all(!is.na(scope$drop)) & length(scope$drop)){
                    for(sdrop in scope$drop){
                        newForm <- update.formula(form,
as.formula(paste(". ~ . ", sdrop, sep = "-")))
                        newObject <- update(fit, newForm, evaluate =
FALSE)
                        newObject <- try(eval.parent(newObject))
#check if the model gave an error or not
                        if(class(newObject) != "try-error"){
                            bAIC <- extractAIC(newObject, scale, k = k,
...)
#                            bAIC <- extractAIC(newObject, scale, k = k)
                            edf <- bAIC[1]
                            if(AICc){
                                bAIC <- bAIC[2] + (2 * edf + (edf * 1))
/ (n - edf - 1)
                            } else {
                                bAIC <- bAIC[2]
                            }
                            deviance <- mydeviance(newObject)
                            if(positive.definite &&
class(try(intervals(newObject))) == "try-error"){
                                bAIC <- ifelse(is.infinite(cAIC[i]), NA,
-Inf)
                            } else {                           
                                if(bestAIC > bAIC){
                                    bestAIC <- bAIC
                                }
                            }
                        } else {
#set the AIC temporary to -Inf if the model gave an error. This will be
reset later on to NA. It is set to -Inf so the model will have the
lowest AIC and will be expanded.
                            edf <- n
                            bAIC <- ifelse(is.infinite(cAIC[i]), NA,
-Inf)
                            newObject <- NULL
                            deviance <- NA
                        }
                        if(ncol(attr(terms(newForm), "factors")) > 1){
#sort the terms in the model alphabetical or make the NULL model
                            newFixed <-
sort(sapply(strsplit(colnames(attr(terms(newForm), "factors")), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":")))
                            newFixed <- paste(c(rownames(attr(Terms,
"factors"))[attr(Terms, "offset")], newFixed), collapse = " + ")
                            expanded <- FALSE
                        } else {
                            newFixed <- paste(c(rownames(attr(Terms,
"factors"))[attr(Terms, "offset")], 1), collapse = " + ")
                            expanded <- TRUE
                            bAIC <- ifelse(is.infinite(bAIC), NA, bAIC)
                        }
                        nm <- nm + 1
                        models[[nm]] <- list(deviance = deviance,
df.resid = n - edf, AIC = bAIC, formula = paste(response,
paste(newFixed, collapse = " + "), sep = " ~ "), expanded = expanded,
object = newObject)
                        if(trace >= 3){
                            cat("Model", nm, "Drop: ", sdrop, "\n",
cut.string(deparse(as.vector(as.formula(paste(response, newFixed, sep =
" ~ "))))), "\nAIC: ", round(bAIC, 3), " Best AIC: ", round(bestAIC, 3),
"\n\n")
                            utils::flush.console()
                        }
                    }
                }
            }
            if (forward && length(scope$add)) {
                rhs <- sapply(scope$add, function(x){
                    selection <- which(colnames(attr(Terms, "factors"))
== x)
                    fixed <-
paste(sort(sapply(strsplit(c(colnames(attr(Terms, "factors")), x), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":"))), collapse =
" + ")
                    paste(response, paste(c(rownames(attr(Terms,
"factors"))[attr(Terms, "offset")], fixed), collapse = " + "), sep = " ~
")
                })
                scope$add <- scope$add[sapply(rhs, function(rhst){
                    all(sapply(models[seq_len(nm)], function(x){
                        x$formula != rhst
                    }))
                })]
                if(all(!is.na(scope$add)) & length(scope$add)){
                    for(sadd in scope$add){
                        newForm <- update.formula(form,
as.formula(paste(". ~ . ", sadd, sep = "+")))
                        newObject <- update(fit, newForm, evaluate =
FALSE)
                        newObject <- try(eval.parent(newObject))
                        if(class(newObject) != "try-error"){
                            bAIC <- extractAIC(newObject, scale, k = k,
...)
#                            bAIC <- extractAIC(newObject, scale, k = k)
                            edf <- bAIC[1]
                            if(AICc){
                                bAIC <- bAIC[2] + (2 * edf + (edf * 1))
/ (n - edf - 1)
                            } else {
                                bAIC <- bAIC[2]
                            }
                            deviance <- mydeviance(newObject)
                            if(positive.definite &&
class(try(intervals(newObject))) == "try-error"){
                                bAIC <- ifelse(is.infinite(cAIC[i]), NA,
-Inf)
                            } else {                           
                                if(bestAIC > bAIC){
                                    bestAIC <- bAIC
                                }
                            }
                        } else {
                            edf <- NA
                            deviance <- NA
                            bAIC <- ifelse(is.infinite(cAIC[i]), NA,
-Inf)
                            newObject <- NULL
                        }
                        newFixed <-
sort(sapply(strsplit(colnames(attr(terms(newForm), "factors")), ":",
fixed = TRUE), function(x) paste(sort(x), collapse = ":")))
                        newFixed <- paste(c(rownames(attr(terms(fit),
"factors"))[attr(terms(fit), "offset")], newFixed), collapse = " + ")
                        nm <- nm + 1
                        models[[nm]] <- list(deviance = deviance,
df.resid = n - edf, AIC = bAIC, formula = paste(response, newFixed, sep
= " ~ "), expanded = FALSE, object = newObject)
                        if(trace >= 3){
                            cat("Model", nm, "Add: ", sadd, "\n",
cut.string(deparse(as.vector(as.formula(paste(response, newFixed, sep =
" ~ "))))), "\nAIC: ", round(bAIC, 3), " Best AIC: ", round(bestAIC, 3),
"\n\n")
                            utils::flush.console()
                        }
                    }
                }
            }
        }
        models[seq_len(nm)] <-
models[seq_len(nm)][order(sapply(models[seq_len(nm)],
function(x){x$AIC}))]
        selection <- which(sapply(models[seq_len(nm)], function(x){
            (x$AIC - bestAIC < delta) | is.infinite(x$AIC)
        }) == TRUE)
        if(length(selection) < bandwidth){
            selection <- seq_len(min(c(nm, bandwidth)))
        }
        unselect <- seq_len(nm)[!seq_len(nm) %in% selection]
        models[unselect] <- lapply(models[unselect], function(x){
            x$object <- NULL
            x
        })
        selection <- selection[sapply(models[selection],
function(x){!x$expanded})]
    }
        if(nm > steps){
                cat("Warning: algorithm did not converge")
                models[[1]]$Converged <- FALSE
        } else {
                models[[1]]$Converged <- TRUE
        }
    models[sapply(models, function(x){
        !is.null(x)
    })]
}


factor.scope <- function (factor, scope, marginal = NULL, joint = NULL)
{
    drop <- scope$drop
    add <- scope$add
    if (length(factor) && !is.null(drop)) {
        facs <- factor
        if (length(drop)) {
            nmdrop <- colnames(drop)
            nmfac <- colnames(factor)
            nmfac0 <- sapply(strsplit(nmfac, ":", fixed = TRUE),
function(x) paste(sort(x), collapse = ":"))
            nmdrop0 <- sapply(strsplit(nmdrop, ":", fixed = TRUE),
function(x) paste(sort(x), collapse = ":"))
            where <- match(nmdrop0, nmfac0, 0)
            if (any(!where)){
                stop(gettextf("lower scope has term(s) %s not included
in model",  paste(sQuote(nmdrop[where == 0]), collapse = ", ")), domain
= NA)
            }
            facs <- factor[, -where, drop = FALSE]
            nmdrop <- nmfac[-where]
        } else { 
            nmdrop <- colnames(factor)
        }
        if (ncol(facs) > 1) {
            keep <- rep.int(TRUE, ncol(facs))
            f <- crossprod(facs > 0)
            for (i in seq(keep)){
                keep[i] <- max(f[i, -i]) != f[i, i]
            }
            nmdrop <- nmdrop[keep]
        }
        keep <- unique(unlist(lapply(strsplit(nmdrop, ":", fixed =
TRUE), function(x){
            whereMarginal <- match(x, names(marginal))
            if(!all(is.na(whereMarginal))){
                if(length(x) == 1){
                    marginal[[whereMarginal]]
                } else {
                    lowerOrderTerms <- lapply(seq_along(whereMarginal),
function(z){
                        if(is.na(whereMarginal[z])){
                           x[z]
                        } else {
                            c(x[z], marginal[[whereMarginal[z]]])
                        }
                    })
                    lowerOrder <- apply(expand.grid(lowerOrderTerms), 1,
function(z){
                        paste(sort(z), collapse = ":")
                    })
                    lowerOrder[!lowerOrder %in% paste(sort(x), collapse
= ":")]
                }
            }
        })))
        nmdrop <- nmdrop[!nmdrop %in% keep]
        if(length(joint) & length(nmdrop)){
            nmdrop <- sapply(strsplit(nmdrop, ":", fixed = TRUE),
function(sdrop){
                whereJoint <- sapply(joint, function(x){
                    !all(!sdrop %in% x)
                })
                if(sum(whereJoint) > 0){
                    if(length(sdrop) == 1){
                        paste(unlist(joint[whereJoint]), collapse = "-")
                    } else {
                        whichJoint <- !sdrop %in%
unlist(joint[whereJoint])
                        paste(sdrop[whichJoint],
unlist(joint[whereJoint]), sep = ":", collapse = "-")
                    }
                } else {
                    paste(sdrop, collapse = ":")
                }
            })
            nmdrop <- unique(nmdrop)
        }
    } else {
        nmdrop <- character(0)
    }
    if (!length(add)){
        nmadd <- character(0)
    } else {
        nmfac <- colnames(factor)
        nmadd <- colnames(add)
        if (!is.null(nmfac)) {
            nmfac0 <- sapply(strsplit(nmfac, ":", fixed = TRUE),
function(x) paste(sort(x), collapse = ":"))
            nmadd0 <- sapply(strsplit(nmadd, ":", fixed = TRUE),
function(x) paste(sort(x), collapse = ":"))
            where <- match(nmfac0, nmadd0, 0)
            if (any(!where)){
                stop(gettextf("upper scope does not include model
term(s) %s", paste(sQuote(nmfac[where == 0]), collapse = ", ")), domain
= NA)
            }
            nmadd <- nmadd[-where]
            add <- add[, -where, drop = FALSE]
        }
        if (ncol(add) > 1) {
            keep <- rep.int(TRUE, ncol(add))
            f <- crossprod(add > 0)
            for (i in seq(keep)){
                keep[-i] <- keep[-i] & (f[i, -i] < f[i, i])
            }
            nmadd <- nmadd[keep]
        }
        if(length(nmadd)){
            keep <- sapply(strsplit(nmadd, ":", fixed = TRUE),
function(x){
                whereMarginal <- match(x, names(marginal))
                if(!all(is.na(whereMarginal))){
                    if(length(x) == 1){
                        all(!marginal[[whereMarginal]] %in% nmadd)
                    } else {
                        lowerOrderTerms <-
lapply(seq_along(whereMarginal), function(z){
                            if(is.na(whereMarginal[z])){
                               x[z]
                            } else {
                                c(x[z], marginal[[whereMarginal[z]]])
                            }
                        })
                        lowerOrder <-
apply(expand.grid(lowerOrderTerms), 1, function(z){
                            paste(sort(z), collapse = ":")
                        })
                        lowerOrder <- lowerOrder[!lowerOrder %in%
paste(sort(x), collapse = ":")]
                        all(!lowerOrder %in% nmadd)
                    }
                } else {
                    TRUE
                }
            })
            nmadd <- nmadd[keep]
        }
        if(length(nmadd) & length(joint)){
            nmadd <- sapply(strsplit(nmadd, ":", fixed = TRUE),
function(sadd){
                whereJoint <- sapply(joint, function(x){
                    !all(!sadd %in% x)
                })
                if(sum(whereJoint) > 0){
                    whichJoint <- !sadd %in% unlist(joint[whereJoint])
                    if(length(sadd) == 1){
                        paste(unlist(joint[whereJoint]), collapse = "+")
                    } else {
                        paste(sadd[whichJoint],
unlist(joint[whereJoint]), sep = ":", collapse = "+")
                    }
                } else {
                    paste(sadd, collapse = ":")
                }
            })
            nmadd <- unique(nmadd)
            
        }
    }
    list(drop = nmdrop, add = nmadd)
}

-----Oorspronkelijk bericht-----
Van: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org]
Namens Dr. Christoph Scherber
Verzonden: donderdag 30 april 2009 13:51
Aan: r-help@r-project.org
Onderwerp: [R] stepAICc

Dear R users,

Would it be difficult to change the code of stepAIC (from the MASS
library) to use AICc instead of AIC?

It would be great to know of someone has tried this already.

Best wishes
Christoph.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer 
en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd is
door een geldig ondertekend document. The views expressed in  this message 
and any annex are purely those of the writer and may not be regarded as stating 
an official position of INBO, as long as the message is not confirmed by a duly 
signed document.

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
  • [R] stepAICc Dr. Christoph Scherber
    • Re: [R] stepAICc ONKELINX, Thierry

Reply via email to