Thanks Tobias! A new question: if I want to draw an average ROC from cross-validation, how to make the bar color same as the line color? Here is my code:
"plot( perf2,avg="threshold",lty=2,col=2, spread.estimate="stddev",barcol=2)" Even I specify "barcol=2", the color of bars are still black, the default one, instead of red "2". --Tim --- On Tue, 5/12/09, Tobias Sing <tobias.s...@gmail.com> wrote: From: Tobias Sing <tobias.s...@gmail.com> Subject: Re: [R] ROCR: auc and logarithm plot To: timlee...@yahoo.com, r-help@r-project.org Date: Tuesday, May 12, 2009, 5:54 AM > 1. I have tried to understand how to extract area-under-curve value by looking at the ROCR document and googling. Still I am not sure if I am doing the right thing. Here is my code, is "auc1" the auc value? > " > pred1 <- prediction(resp1,label1) > > perf1 <- performance(pred1,"tpr","fpr") > plot( perf1, type="l",col=1 ) > > auc1 <- performance(pred1,"auc") > auc1 <- a...@y.values[[2]] > " If you have only one set of predictions and matching class labels, it would be in a...@y.values[[1]]. If you have multiple sets (as from cross-validation or bootstrapping), the AUCs would be in a...@y.values[[1]], a...@y.values[[2]], etc. You can collect all of them for example by unlist(p...@y.values). Btw, you can use str(auc1) to see the structure of objects. > 2. I have to compare two models that have very close ROCs. I'd like to have a more distinguishable plot of the ROCs. So is it possible to have a logarithm FP axis which might probably separate them well? Or zoom in the part close to the leftup corner of ROC plot? Or any other ways to make the ROCs more separate? To "zoom in" to a specific part: plot(perf1, xlim=c(0,0.2), ylim=c(0.7,1)) plot(perf2, add=TRUE, lty=2, col='red') If you want logarithmic axes (though I wouldn't personally do this for a ROC plot), you can set up an empty canvas and add ROC curves to it: plot(1,1, log='x', xlim=c(0.001,1), ylim=c(0,1), type='n') plot(perf, add=TRUE) You can adjust all components of the performance plots. See ?plot.performance and the examples in this slide deck: http://rocr.bioinf.mpi-sb.mpg.de/ROCR_Talk_Tobias_Sing.ppt Hope that helps, Tobias [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.