The solution is much simpler (thanks Phil!)
new_data = data[!data$"legal status" %in% c("Private","Private
(Op","Unknown"),]
...works nicely.
frenchcr wrote:
>
> hello folks,
>
> Im trying to clean out a large file with data i dont need.
> The column im manipulating in the file is called "legal_status"
> There are three kinds of rows i want to remove. Those that have "Private",
> "Private (Op", or "Unknown" in the legal_status column.
>
>
> I wrote this code but i get errors and it says im missing a TRUE/ False
> thingy...im lost...heres the code...
>
>
>
> cleanse <- function(a){
> data1<-a
>
> for (i in 1:dim(data1)[1])
> {
> if (data1[i,"legal_status"] == "Private")
> {
> data1[i,"legal_status"]<-data1[-i,"legal_status"]
> }
> if (data1[i,"legal_status"] == "Private (Op"){
> data1[i,"legal_status"]<-data1[-i,"legal_status"]
> }
> if (data1[i,"legal_status"] == "Unknown"){
> data1[i,"legal_status"]<-data1[-i,"legal_status"]
> }
> }
>
> return(data1)
> }
> new_data<-cleanse(data)
>
>
>
>
> Any ideas?
>
--
View this message in context:
http://old.nabble.com/cleanse-columns-and-unwanted-rows-tp26342169p26350874.html
Sent from the R help mailing list archive at Nabble.com.
______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.