Dear list member, My question is related to input file format to an Anova from car package.
Here is an example of what I did: My file format is like this (and I dislike the idea that I will need to recode it): Hormone day Block Treatment Plant Diameter High N.Leaves SH 23 1 1 1 3.19 25.3 2 SH 23 1 1 2 3.42 5.5 1 SH 23 1 2 1 2.19 5.2 2 SH 23 1 2 2 2.17 7.6 2 CH 23 1 1 1 3.64 6.5 2 CH 23 1 1 2 2.8 3.7 2 CH 23 1 2 1 3.28 4 2 CH 23 1 2 2 2.82 5.2 2 SH 23 2 1 1 2.87 6.4 2 SH 23 2 1 2 2.8 6 2 SH 23 2 2 1 2.02 4.5 2 SH 23 2 2 2 3.15 5.5 2 CH 23 2 1 1 3.22 2.3 2 CH 23 2 1 2 2.45 3.8 2 CH 23 2 2 1 1.85 3.5 2 CH 23 2 2 2 3.13 4.4 2 CH 39 1 1 1 2.64 6 2 CH 39 1 1 2 4.33 10 2 CH 39 1 2 1 3.74 9 2 CH 39 1 2 2 3.23 8 2 SH 39 1 1 1 3.8 8 2 SH 39 1 1 2 2.35 9 2 SH 39 1 2 1 3.66 6 2 SH 39 1 2 2 3.92 7 2 CH 39 2 1 1 3.28 7 2 CH 39 2 1 2 4.99 7 2 CH 39 2 2 1 2.49 6 2 CH 39 2 2 2 4.75 7 2 SH 39 2 1 1 3.35 5 2 SH 39 2 1 2 4.38 7 2 SH 39 2 2 1 5.11 9 2 SH 39 2 2 2 2.71 5 2 idata <- data.frame(Idade=factor(c(23,39))) a = read.table("clipboard", sep=" ", head=T) mod.ok <- lm(Diameter ~ Treatment*Hormone, data=a) av.ok <- Anova(mod.ok, idata=idata, idesign=~as.factor(day)) summary(av.ok) Sum Sq Df F value Pr(>F) Min. : 0.02153 Min. : 1.00 Min. :0.02828 Min. :0.5105 1st Qu.: 0.06169 1st Qu.: 1.00 1st Qu.:0.06346 1st Qu.:0.6331 Median : 0.20667 Median : 1.00 Median :0.09863 Median :0.7558 Mean : 5.43711 Mean : 7.75 Mean :0.19043 Mean :0.7113 3rd Qu.: 5.58208 3rd Qu.: 7.75 3rd Qu.:0.27150 3rd Qu.:0.8117 Max. :21.31356 Max. :28.00 Max. :0.44437 Max. :0.8677 NA's :1.00000 NA's :1.0000 This result is wrong, I believe. Here, is a file format with repeated measures side-by-side: Hormone Block Treatment Plant Diameter.23 Diameter.39 High.23 High.39 N.Leaves.23 N.Leaves.39 SH 1 1 1 3.19 2.64 25.3 6 2 2 SH 1 1 2 3.42 4.33 5.5 10 1 2 SH 1 2 1 2.19 3.74 5.2 9 2 2 SH 1 2 2 2.17 3.23 7.6 8 2 2 CH 1 1 1 3.64 3.8 6.5 8 2 2 CH 1 1 2 2.8 2.35 3.7 9 2 2 CH 1 2 1 3.28 3.66 4 6 2 2 CH 1 2 2 2.82 3.92 5.2 7 2 2 SH 2 1 1 2.87 3.28 6.4 7 2 2 SH 2 1 2 2.8 4.99 6 7 2 2 SH 2 2 1 2.02 2.49 4.5 6 2 2 SH 2 2 2 3.15 4.75 5.5 7 2 2 CH 2 1 1 3.22 3.35 2.3 5 2 2 CH 2 1 2 2.45 4.38 3.8 7 2 2 CH 2 2 1 1.85 5.11 3.5 9 2 2 CH 2 2 2 3.13 2.71 4.4 5 2 2 idata <- data.frame(day=factor(c(23,39))) a = read.table("clipboard", sep=" ", head=T) mod.ok <- lm(cbind(Diameter.23,Diameter.39) ~ Treatment*Hormone, data=a) av.ok <- Anova(mod.ok, idata=idata, idesign= ~ as.factor(day)) summary(av.ok) Type II Repeated Measures MANOVA Tests: ------------------------------------------ Term: Treatment Response transformation matrix: (Intercept) Diameter.23 1 Diameter.39 1 Sum of squares and products for the hypothesis: (Intercept) (Intercept) 0.6765062 Sum of squares and products for error: (Intercept) (Intercept) 13.05917 Multivariate Tests: Treatment Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0492517 0.6216377 1 12 0.44574 Wilks 1 0.9507483 0.6216377 1 12 0.44574 Hotelling-Lawley 1 0.0518031 0.6216377 1 12 0.44574 Roy 1 0.0518031 0.6216377 1 12 0.44574 ------------------------------------------ Term: Hormone Response transformation matrix: (Intercept) Diameter.23 1 Diameter.39 1 Sum of squares and products for the hypothesis: (Intercept) (Intercept) 0.09150625 Sum of squares and products for error: (Intercept) (Intercept) 13.05917 Multivariate Tests: Hormone Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0069583 0.08408456 1 12 0.77679 Wilks 1 0.9930417 0.08408456 1 12 0.77679 Hotelling-Lawley 1 0.0070070 0.08408456 1 12 0.77679 Roy 1 0.0070070 0.08408456 1 12 0.77679 ------------------------------------------ Term: Treatment:Hormone Response transformation matrix: (Intercept) Diameter.23 1 Diameter.39 1 Sum of squares and products for the hypothesis: (Intercept) (Intercept) 1.139556 Sum of squares and products for error: (Intercept) (Intercept) 13.05917 Multivariate Tests: Treatment:Hormone Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0802576 1.047132 1 12 0.32636 Wilks 1 0.9197424 1.047132 1 12 0.32636 Hotelling-Lawley 1 0.0872610 1.047132 1 12 0.32636 Roy 1 0.0872610 1.047132 1 12 0.32636 ------------------------------------------ Term: as.factor(day) Response transformation matrix: as.factor(day)1 Diameter.23 1 Diameter.39 -1 Sum of squares and products for the hypothesis: as.factor(day)1 as.factor(day)1 11.78206 Sum of squares and products for error: as.factor(day)1 as.factor(day)1 15.41527 Multivariate Tests: as.factor(day) Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.4332063 9.171726 1 12 0.010496 * Wilks 1 0.5667937 9.171726 1 12 0.010496 * Hotelling-Lawley 1 0.7643105 9.171726 1 12 0.010496 * Roy 1 0.7643105 9.171726 1 12 0.010496 * --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 ------------------------------------------ Term: Treatment:as.factor(day) Response transformation matrix: as.factor(day)1 Diameter.23 1 Diameter.39 -1 Sum of squares and products for the hypothesis: as.factor(day)1 as.factor(day)1 1.139556 Sum of squares and products for error: as.factor(day)1 as.factor(day)1 15.41527 Multivariate Tests: Treatment:as.factor(day) Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0688353 0.887086 1 12 0.36484 Wilks 1 0.9311647 0.887086 1 12 0.36484 Hotelling-Lawley 1 0.0739238 0.887086 1 12 0.36484 Roy 1 0.0739238 0.887086 1 12 0.36484 ------------------------------------------ Term: Hormone:as.factor(day) Response transformation matrix: as.factor(day)1 Diameter.23 1 Diameter.39 -1 Sum of squares and products for the hypothesis: as.factor(day)1 as.factor(day)1 0.1501563 Sum of squares and products for error: as.factor(day)1 as.factor(day)1 15.41527 Multivariate Tests: Hormone:as.factor(day) Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0096468 0.1168889 1 12 0.73835 Wilks 1 0.9903532 0.1168889 1 12 0.73835 Hotelling-Lawley 1 0.0097407 0.1168889 1 12 0.73835 Roy 1 0.0097407 0.1168889 1 12 0.73835 ------------------------------------------ Term: Treatment:Hormone:as.factor(day) Response transformation matrix: as.factor(day)1 Diameter.23 1 Diameter.39 -1 Sum of squares and products for the hypothesis: as.factor(day)1 as.factor(day)1 0.04305625 Sum of squares and products for error: as.factor(day)1 as.factor(day)1 15.41527 Multivariate Tests: Treatment:Hormone:as.factor(day) Df test stat approx F num Df den Df Pr(>F) Pillai 1 0.0027853 0.03351708 1 12 0.8578 Wilks 1 0.9972147 0.03351708 1 12 0.8578 Hotelling-Lawley 1 0.0027931 0.03351708 1 12 0.8578 Roy 1 0.0027931 0.03351708 1 12 0.8578 Univariate Type II Repeated-Measures ANOVA Assuming Sphericity SS num Df Error SS den Df F Pr(>F) Treatment 0.3383 1 6.5296 12 0.6216 0.44574 Hormone 0.0458 1 6.5296 12 0.0841 0.77679 Treatment:Hormone 0.5698 1 6.5296 12 1.0471 0.32636 as.factor(day) 5.8910 1 7.7076 12 9.1717 0.01050 * Treatment:as.factor(day) 0.5698 1 7.7076 12 0.8871 0.36484 Hormone:as.factor(day) 0.0751 1 7.7076 12 0.1169 0.73835 Treatment:Hormone:as.factor(day) 0.0215 1 7.7076 12 0.0335 0.85779 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 How I could use Anova from the first file format? If not, could you suggest me a way to recode my data file in R? I ask because I don't know how I can recode my data file on R. Is ti possible? Thank you very much! -- Marcelo Luiz de Laia Universidade do Estado de Santa Catarina UDESC - www.cav.udesc.br Lages - SC - Brazil Linux user number 487797 ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.