On Wed, 05 Mar 2003 22:34:16 +0100 "juli g. pausas" <[EMAIL PROTECTED]> wrote:
> Hi, > For computing correlation among variables in a matrix, I use cor( ), but > for computing the p-values I'm using cor.test in the following way: > > cor.p <- function(X) > { > res <- matrix(0, ncol(X), ncol(X)) > for (i in 1:ncol(X)) > for (j in 1:ncol(X)) res[i, j]<- cor.test(X[, i], X[, j])$p.value > rownames(res) <- colnames(res) <- colnames(X) > res > } > > I'm just wondering if there is a better (nicer) way to do the same. > For example, would it be possible to use apply() with cor.test instead > of using the for loops? > I'm trying to improve my low R skills. > Thanks > > Juli > One approach is to install the Hmisc package and run rcorr(X) which will give you a matrix of P values for Pearson or Spearman correlations. See http://hesweb1.med.virginia.edu/biostat/s/Hmisc.html -- Frank E Harrell Jr Prof. of Biostatistics & Statistics Div. of Biostatistics & Epidem. Dept. of Health Evaluation Sciences U. Virginia School of Medicine http://hesweb1.med.virginia.edu/biostat ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help