I tried 2 methods to estimate C.I. of correlation coefficient of variables x and y:
> x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1) > y <- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8) #METHOD 1: Pearson's ********************************************************** > cor.test(x, y, method = "pearson", conf.level = 0.95) Pearson's product-moment correlation data: x and y t = 1.8411, df = 7, p-value = 0.1082 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: -0.1497426 0.8955795 sample estimates: cor 0.5711816 *********************************************************** #METHOD 2: bootstrap *********************************************************** > boot(cbind(x,y), cor, 200) ORDINARY NONPARAMETRIC BOOTSTRAP Call: boot(data = cbind(x, y), statistic = cor, R = 200) Bootstrap Statistics : original bias std. error t1* 0.5429120 -0.5232893 0.3799117 t2* 0.3832856 -0.3779026 0.3876666 ************************************************************ 'cor.test' gave the value of cor as 0.5711816. Why did 'boot' give two original cors: t1 and t2. And why does none of t1 and t2 equal to what 'cor.test' gave. Thank you very much Xiao ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html