Roger Thanks - I have tried that but it doesn't give the standard errors I required.
Using my example: coef(summary(temp.lm)) gives: Estimate Std. Error t value Pr(>|t|) (Intercept) 44.5 10.535912 4.22364968 0.0003224616 rep2 -1.0 4.214365 -0.23728369 0.8145375583 trt11 -13.0 14.598987 -0.89047272 0.3824325293 trt12 3.0 14.598987 0.20549370 0.8389943428 trt13 -17.0 14.598987 -1.16446432 0.2561726432 .. etc ... that is, standard error for the (intercept) is 10.54, rep 4.21, main effects 14.60, 2-way interactions 20.65 and 3-way interaction 29.20. These can also be obtained via sqrt(diag(vcov(temp.lm))). It is not clear to me how to go from these estimates to those from the aov() call. I have tried pre- and post- multiplying vcov() by the design matrix but this gives the same standard errors as predict(temp.lm, se=T); i.e. those of the predicted values. Regards ........ Peter Alspach >>> "Roger D. Peng" <[EMAIL PROTECTED]> 03/08/04 12:22:44 >>> Try summary(glm.object)$coefficients. -roger Peter Alspach wrote: > Kia ora list members: > > I'm having a little difficulty getting the correct standard > errors from a glm.object (R 1.9.0 under Windows XP 5.1). > predict() will gives standard errors of the predicted values, > but I am wanting the standard errors of the mean. > > To clarify: > > Assume I have a 4x3x2 factorial with 2 complete replications > (i.e. 48 observations, I've appended a dummy set of data at > the end of this message). Call the treatments trt1 (4 > levels), trt2 (3 levels) and trt3 (2 levels) and the > replications rep - all are factors. The observed data is S. > Then: > > temp.aov <- aov(S~rep+trt1*trt2*trt3, data=dummy.data) > model.tables(temp.aov, type='mean', se=T) > > Returns the means, but states "Design is unbalanced - use > se.contrasts for se's" which is a little surprising since the > design is balanced. Nevertheless, se.contrast gives what I'd > expect: > > se.contrast(temp.aov, list(trt1==0, trt1==1), data=dummy.data) > [1] 5.960012 > > i.e. standard error of mean is 5.960012/sqrt(2) = 4.214, which > is the sqrt(anova(temp.aov)[9,3]/12) as expected. Similarly > for interactions, e.g.: > > se.contrast(temp.aov, list(trt1==0 & trt2==0, trt1==1 & > trt2==1), data=dummy.data)/sqrt(2) [1] 7.299494 > > How do I get the equivalent of these standard errors if I have > used lm(), and by extension glm()? I think I should be able > to get these using predict(..., type='terms', se=T) or > coef(summary()) but can't quite see how. > > predict(lm(S~rep+trt1*trt2*trt3, data=dummy.data), > type='terms', se=T) or predict(glm(cbind(S, > 100-S)~rep+trt1*trt2*trt3, data=dummy.data, > family='binomial'), type='terms', se=T) or, as in my case, > predict(glm(cbind(S, 100-S)~rep+trt1*trt2*trt3, > data=dummy.data, family='quasibinomial'), type='terms', se=T) > > > Thanks ........ > > Peter Alspach HortResearch > > dummy.data trt1 trt2 trt3 rep S 0 0 0 1 33 0 > 0 0 2 55 0 0 1 1 > 18 0 0 1 2 12 0 1 0 1 47 0 1 0 > 2 16 0 1 1 1 22 0 1 1 2 33 0 2 > 0 1 22 0 2 0 2 18 0 2 1 1 60 0 > 2 1 2 40 1 0 0 1 38 1 0 0 2 > 24 > 1 0 1 1 8 1 0 1 2 14 1 1 0 > 1 69 1 1 0 2 42 1 1 1 1 42 1 1 > 1 2 > 44 1 2 0 1 48 1 2 0 2 26 1 2 1 > 1 46 1 2 1 2 33 2 0 0 1 48 2 0 > 0 2 46 2 0 1 1 24 2 0 1 2 8 2 > 1 0 1 69 2 1 0 2 33 2 1 1 1 > 22 > 2 1 1 2 33 2 2 0 1 33 2 2 0 > 2 18 2 2 1 1 26 2 2 1 2 42 3 0 > 0 1 > 12 3 0 0 2 42 3 0 1 1 16 3 0 1 > 2 22 3 1 0 1 14 3 1 0 2 60 3 1 > 1 1 40 3 1 1 2 55 3 2 0 1 47 3 > 2 0 2 38 3 2 1 1 18 3 2 1 2 > 44 > > > ______________________________________________________ > > The contents of this e-mail are privileged and/or > confidenti...{{dropped}} > > ______________________________________________ > [EMAIL PROTECTED] mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help PLEASE > do read the posting guide! > http://www.R-project.org/posting-guide.html > ______________________________________________________ The contents of this e-mail are privileged and/or confidenti...{{dropped}} ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html