Dear R-users

I use nnet for a classification (2 classes) problem. I use the code CVnn1, CVnn2 as described in V&R.

The thing I changed to the code is: I define the (class) weight for each observation in each cv 'bag' and give the vector of weights as parameter of nnet(..weights = weight.vector...)

Unfortunately I get an error during some (but not all!) inner-fold cv runs:

        Error in model.frame(formula, rownames, variables, varnames,    
        extras, extranames,  :
                variable lengths differ

If you just remove the weights parameter in nnet() it runs fine!!

I debugged the code but could not resolve the problem- it is really very strange and I need your help! I tried it very simple in defining the weights as = 1 for each obs (as it is by default)!:


CVnn2 <- function(formula, data,
size = c(0,4,4,10,10), lambda = c(0, rep(c(0.001, 0.01),2)),
nreps = 1, nifold = 5, verbose = 99, ...)
{
resmatrix <- function(predict.matrix, learn, data, ri, i)
{
rae.matrix <- predict.matrix
rae.matrix[,] <- 0
rae.vector <- as.numeric(as.factor((predict(learn, data[ri == i,],
type = "class"))))
for (k in 1:dim(rae.matrix)[1]) {
if (rae.vector[k] == 1)
rae.matrix[k,1] <- rae.matrix[k,1] + 1
else
rae.matrix[k,2] <- rae.matrix[k,2] + 1
}
rae.matrix
}



CVnn1 <- function(formula, data, nreps=1, ri, verbose, ...) { totalerror <- 0 truth <- data[,deparse(formula[[2]])] res <- matrix(0, nrow(data), length(levels(truth))) if(verbose > 20) cat(" inner fold") for (i in sort(unique(ri))) { if(verbose > 20) cat(" ", i, sep="") data.training <- data[ri != i,]$GROUP

            weight.vector <- rep(1, dim(data[ri !=i,])[1])

for(rep in 1:nreps) {
learn <- nnet(formula, data[ri !=i,],
weights = weight.vector,
trace = F, ...)
#res[ri == i,] <- res[ri == i,] + predict(learn, data[ri == i,])
res[ri == i,] <- res[ri == i,] + resmatrix(res[ri == i,],
learn, data, ri, i)
}
}
if(verbose > 20) cat("\n")
sum(as.numeric(truth) != max.col(res/nreps))
}
truth <- data[,deparse(formula[[2]])]
res <- matrix(0, nrow(data), length(levels(truth)))
choice <- numeric(length(lambda))
for (i in sort(unique(rand))) {
if(verbose > 0) cat("fold ", i,"\n", sep="")
set.seed(i*i)
ri <- sample(nifold, sum(rand!=i), replace=T)
for(j in seq(along=lambda)) {
if(verbose > 10)
cat(" size =", size[j], "decay =", lambda[j], "\n")
choice[j] <- CVnn1(formula, data[rand != i,], nreps=nreps,
ri=ri, size=size[j], decay=lambda[j],
verbose=verbose, ...)
}
decay <- lambda[which.is.max(-choice)]
csize <- size[which.is.max(-choice)]
if(verbose > 5) cat(" #errors:", choice, " ") #
if(verbose > 1) cat("chosen size = ", csize,
" decay = ", decay, "\n", sep="")
for(rep in 1:nreps) {
data.training <- data[rand != i,]$GROUP
weight.vector <- rep(1, dim(data[rand !=i,])[1])
learn <- nnet(formula, data[rand != i,],
weights = weight.vector,
trace=F,
size=csize, decay=decay, ...)
#res[rand == i,] <- res[rand == i,] + predict(learn, data[rand == i,])
res[rand == i,] <- res[rand == i,] + resmatrix(res[rand == i,],learn,data, rand, i)
}
}
factor(levels(truth)[max.col(res/nreps)], levels = levels(truth))
}




res.nn2 <- CVnn2(GROUP ~ ., rae.data.subsetted1, skip = T, maxit = 500,
                 nreps = cv.repeat)
con(true = rae.data.subsetted$GROUP, predicted = res.nn2)



###


Coordinates: platform i686-pc-linux-gnu arch i686 os linux-gnu system i686, linux-gnu status major 1 minor 9.1 year 2004 month 06 day 21 language R


########

Thanks a lot

Best regards

Christoph
--
Christoph Lehmann                            Phone:  ++41 31 930 93 83
Department of Psychiatric Neurophysiology    Mobile: ++41 76 570 28 00
University Hospital of Clinical Psychiatry   Fax:    ++41 31 930 99 61
Waldau                                            [EMAIL PROTECTED]
CH-3000 Bern 60         http://www.puk.unibe.ch/cl/pn_ni_cv_cl_03.html

______________________________________________
[EMAIL PROTECTED] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to