Greetings:
I'm running R-1.9.1 on Fedora Core 2 Linux.
I tested a proportional odds logistic regression with MASS's polr and Design's lrm. Parameter estimates between the 2 are consistent, but the standard errors are quite different, and the conclusions from the t and Wald tests are dramatically different. I cranked the "abstol" argument up quite a bit in the polr method and it did not make the differences go away.
So
1. Can you help me see why the std. errors in the polr are so much smaller, and
2. Can I hear more opinions on the question of t vs. Wald in making these signif tests. So far, I understand the t is based on the asymptotic Normality of the estimate of b, and for finite samples b/se is not exactly distributed as a t. But I also had the impression that the Wald value was an approximation as well.
> summary(polr(as.factor(RENUCYC) ~ DOCS + PCT65PLS*RANNEY2 + OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data=elaine1))
Re-fitting to get Hessian
Call: polr(formula = as.factor(RENUCYC) ~ DOCS + PCT65PLS * RANNEY2 + OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
Coefficients: Value Std. Error t value DOCS 0.004942217 0.002952001 1.674192 PCT65PLS 0.454638558 0.113504288 4.005475 RANNEY2 0.110473483 0.010829826 10.200855 OLDCRASH 0.139808663 0.042245692 3.309418 FISCAL2 0.025592117 0.011465812 2.232037 PCTMETRO 0.018184093 0.007792680 2.333484 ADMLICEN -0.028490387 0.011470999 -2.483688 PCT65PLS:RANNEY2 -0.008559228 0.001456543 -5.876400
Intercepts: Value Std. Error t value 2|3 6.6177 0.3019 21.9216 3|4 7.1524 0.2773 25.7938 4|5 10.5856 0.2149 49.2691 5|6 12.2132 0.1858 65.7424 6|8 12.2704 0.1856 66.1063 8|10 13.0345 0.2184 59.6707 10|12 13.9801 0.3517 39.7519 12|18 14.6806 0.5587 26.2782
Residual Deviance: 587.0995 AIC: 619.0995
> lrm(RENUCYC ~ DOCS + PCT65PLS*RANNEY2 + OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data=elaine1)
Logistic Regression Model
lrm(formula = RENUCYC ~ DOCS + PCT65PLS * RANNEY2 + OLDCRASH + FISCAL2 + PCTMETRO + ADMLICEN, data = elaine1)
Frequencies of Responses 2 3 4 5 6 8 10 12 18 21 12 149 46 1 10 6 2 2
Frequencies of Missing Values Due to Each Variable RENUCYC DOCS PCT65PLS RANNEY2 OLDCRASH FISCAL2 PCTMETRO ADMLICEN 5 0 0 6 0 5 0 5
Obs Max Deriv Model L.R. d.f. P C Dxy
249 7e-05 56.58 8 0 0.733 0.465
Gamma Tau-a R2 Brier
0.47 0.278 0.22 0.073
Coef S.E. Wald Z P y>=3 -6.617857 6.716688 -0.99 0.3245 y>=4 -7.152561 6.716571 -1.06 0.2869 y>=5 -10.585705 6.742222 -1.57 0.1164 y>=6 -12.213340 6.755656 -1.81 0.0706 y>=8 -12.270506 6.755571 -1.82 0.0693 y>=10 -13.034584 6.756829 -1.93 0.0537 y>=12 -13.980235 6.767724 -2.07 0.0389 y>=18 -14.680760 6.786639 -2.16 0.0305 DOCS 0.004942 0.002932 1.69 0.0918 PCT65PLS 0.454653 0.552430 0.82 0.4105 RANNEY2 0.110475 0.076438 1.45 0.1484 OLDCRASH 0.139805 0.042104 3.32 0.0009 FISCAL2 0.025592 0.011374 2.25 0.0245 PCTMETRO 0.018184 0.007823 2.32 0.0201 ADMLICEN -0.028490 0.011576 -2.46 0.0138 PCT65PLS * RANNEY2 -0.008559 0.006417 -1.33 0.1822
>
-- Paul E. Johnson email: [EMAIL PROTECTED] Dept. of Political Science http://lark.cc.ku.edu/~pauljohn 1541 Lilac Lane, Rm 504 University of Kansas Office: (785) 864-9086 Lawrence, Kansas 66044-3177 FAX: (785) 864-5700
______________________________________________ [EMAIL PROTECTED] mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html