Dear Jin, if you mean `conditional linearity', (i.e. given the nonlinear parameter, the model is linear) you can use nls() with algorithm = "plinear". See ?nls Alternatively, if your model has just one nonlinear parameter th, say, I think you can write the objective function (for instance the logLik) depending on th and use optimize() to search for the optimum; Then fit your model assuming th known (and ignoring its (co)variability.. ). Something like:
fn<-function(th,y,X){ #the deviance function depending on th #th: nonlinear parameter to be estimated #y: the response #X: the design matrix o<-glm(y~X+_someKnownFunction(th)_+..) o$dev } #search the optimum ob<-optimize(fn,.. th1<-ob$minimum #(or ob$maximum) o<-glm(y~X+_someKnownFunction(th1)_+..) #fit the model assuming th=th1 *known* Hope this helps, vito muggeo ----- Original Message ----- From: Jin Shusong <[EMAIL PROTECTED]> To: R Help <[EMAIL PROTECTED]> Sent: Thursday, December 16, 2004 4:33 PM Subject: [R] partial linear model > Dear all, > > Are there any packages can estimate the partial linear > model. Or any one can give me any suggestions. > > Many thanks in advance. > > > Jin > > ______________________________________________ > [EMAIL PROTECTED] mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html ______________________________________________ [EMAIL PROTECTED] mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html