then is the nls function can deal the problem as Guillaume STORCHI mentioned in 
the last post? [X<-nls(y~x+exp(a*x)*eps, data=,start=list(a=,eps=))]
or just can solve the problem as:log(y-x) = a*x + e?



On Fri, 18 Mar 2005 08:56:38 -0500
"Liaw, Andy" <[EMAIL PROTECTED]> wrote:

> AFAIK most model fitting techniques will only deal with additive errors, not
> multiplicative ones.  You might want to try fitting:
> 
> log(y-x) = a*x + e
> 
> which is linear.
> 
> Andy
> 
> > From: Angelo Secchi
> > 
> > Hi,
> > is there a way  in R to fit a non linear model like
> > 
> > y=x+exp(a*x)*eps
> > 
> > where a is the parameter and eps is the error term? 
> > Thanks
> > Angelo
> > 
> > ______________________________________________
> > R-help@stat.math.ethz.ch mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide! 
> > http://www.R-project.org/posting-guide.html
> > 
> > 
> >
> 
> ______________________________________________
> R-help@stat.math.ethz.ch mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to