Hello, While doing test of normality under R and SAS, in order to prove the efficiency of R to my company, I notice
that Anderson Darling, Cramer Van Mises and Shapiro-Wilk tests results are quite the same under the two environnements, but the Kolmogorov-smirnov p-value really is different. Here is what I do: > ks.test(w,pnorm,mean(w),sd(w)) One-sample Kolmogorov-Smirnov test data: w D = 0.2143, p-value = 0.3803 alternative hypothesis: two.sided > w [1] 3837 3334 2208 1745 2576 3208 3746 3523 3430 3480 3116 3428 2184 2383 3500 3866 3542 [18] 3278 SAS results: Kolmogorov-Smirnov D 0.214278 Pr > D 0.0271 Why is the p-value so high under R? Much higher than with other tests. Best regards, Anthony Landrevie (French Student) --------------------------------- [[alternative HTML version deleted]] ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html