Dear all, I want to evaluate several generalized linear mixed models, including the null model, and select the best approximating one. I have tried glmmPQL (MASS library) and GLMM (lme4) to fit the models. Both result in similar parameter estimates but fairly different likelihood estimates. My questions: 1- Is it correct to calculate AIC for comparing my models, given that they use quasi-likelihood estimates? If not, how can I compare them? 2- Why the large differences in likelihood estimates between the two procedures?
Thanks, Nestor ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html