check this:

library(nlme)
B <- 1000
N <- 100
n <- 5
x <- rep(runif(N, -4, 4), each=n)
gr <- rep(1:N, each=n)
####################
T <- numeric(B)
for(i in 1:B){
   y <- rnorm(N*n, 1 + 1.5*x)
   L0 <- lm(y~x)
   L1 <- lme(y~x, random=~1|gr, method="ML")
   T[i] <- anova(L1, L0)$L.Ratio[2]
}
hist(T, prob=TRUE, breaks=100)


I hope it helps.

Best,
Dimitris

----
Dimitris Rizopoulos
Ph.D. Student
Biostatistical Centre
School of Public Health
Catholic University of Leuven

Address: Kapucijnenvoer 35, Leuven, Belgium
Tel: +32/16/336899
Fax: +32/16/337015
Web: http://www.med.kuleuven.ac.be/biostat/
    http://www.student.kuleuven.ac.be/~m0390867/dimitris.htm



----- Original Message ----- From: "Beatrijs Moerkerke" <[EMAIL PROTECTED]>
To: <r-help@stat.math.ethz.ch>
Sent: Wednesday, May 04, 2005 12:03 PM
Subject: [R] lme versus proc mixed in SAS



Dear all,

I am trying to simulate the null distribution for the likelihood ratio test statistic for testing 1 random effect versus no random effect. The asymptotic null distribution should be a mixture of a chi-squared distribution with 0 degrees of freedom and a chi-squared distribution with 1 degree of freedom. This means that I expect a point mass of 50% on 0 for the likelihood ratio test statistic.
However, when I generate data using no random effects and when I calculate the test statistics for these data, I never obtain exactly zero. I think this might be due to rounding errors but in fact, 70% of the calculated test statistics are negative. I have compared a few of these results with the results in proc MIXED and I found that SAS does give test statistics that are exactly zero and gives no negative results.


The code I use for calculating the likelihood ratio test statistics is as follows:

a1<-summary(lme(y~x,random=~1|gr,method="ML"))$logLik
a2<-logLik(lm(y~x))
(-2*(a2-a1))

I don't know how I can simulate the null distribution in R using lme.

Thanks for your help,

Kind regards,
Beatrijs Moerkerke

--
Beatrijs Moerkerke
Department of Applied Mathematics and Computer Science
Ghent University
Krijgslaan 281 - S9
B-9000 GENT
Tel: +32-(0)9-264.47.56      Fax: +32-(0)9-264.49.95
E-mail: [EMAIL PROTECTED]

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html



______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to