Dear useRs I need to compute studentized confidence intervals for a correlation, using the boot library.
For this CIs we need to compute a variance estimate of the statistic (here correlation coeff) from each boostrap sample. There are 2 important points, I think: (1) We need to do a fisher transformation (atanh(x)) to correct for non-normality, this can be done easily be specifying h, hinv, and hdot parameteres in the boot.ci call. (2) an estimate for the variance is (as far as I remember) 1-correlation2)2/n (For fisher transformed data, an estimator is: 1/(n-3)) do you think, this is the correct way: library(boot) fisher <- function(r) 0.5*log((1+r)/(1-r)) fisher.dot <- function(r) 1/(1-r2) fisher.inv <- function(z) (exp(2*z)-1)/(exp(2*z)+1) boot.fun <- function(data, i) { n <- length(i) correlation <- cor(data[i,1],data[i,2]) v <- (1-correlation2)2/n c(correlation, v) } td.boot <- boot(td, boot.fun, R=9999) boot.ci(td.boot, h = fisher, hdot = fisher.dot, hinv = fisher.inv, conf = c(0.95)) ?. many thanks for your thoughts cheers christoph -- Weitersagen: GMX DSL-Flatrates mit Tempo-Garantie! Ab 4,99 Euro/Monat: http://www.gmx.net/de/go/dsl ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html