Jenny, "It didn't work" and "They worked" aren't very specific. Also, the package name is ipred and the function is errorest.
The estimator entry on the man page for errorest has: 'cv' cross-validation, 'boot' bootstrap or '632plus' bias corrected bootstrap (classification only). Note the *or*. I tried the analysis of the iris data from the man page with your estimator specification: > testing <- errorest(Species ~ ., data=iris, model=lda, + estimator = c("boot","632plus"), predict= mypredict.lda) > testing Call: errorest.data.frame(formula = Species ~ ., data = iris, model = lda, predict = mypredict.lda, estimator = c("boot", "632plus")) Bootstrap estimator of misclassification error with 25 bootstrap replications Misclassification error: 0.0235 Standard deviation: 0.0028 Call: errorest.data.frame(formula = Species ~ ., data = iris, model = lda, predict = mypredict.lda, estimator = c("boot", "632plus")) .632+ Bootstrap estimator of misclassification error with 25 bootstrap replications Misclassification error: 0.0222 > > unclass(testing) $boot $boot$error [1] 0.02351852 $boot$sd [1] 0.002847447 $boot$bc632plus [1] FALSE $boot$nboot [1] 25 $"632plus" $"632plus"$error [1] 0.02222817 $"632plus"$nboot [1] 25 $"632plus"$bc632plus [1] TRUE $call errorest.data.frame(formula = Species ~ ., data = iris, model = lda, predict = mypredict.lda, estimator = c("boot", "632plus")) Is this consistent with your results? Max LEGAL NOTICE\ Unless expressly stated otherwise, this messag...{{dropped}} ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html