Jenny,

"It didn't work" and "They worked" aren't very specific. Also, the package
name is ipred and the function is errorest.

The estimator entry on the man page for errorest has:

   'cv' cross-validation, 'boot' bootstrap or '632plus' bias corrected
bootstrap (classification only). 

Note the *or*. I tried the analysis of the iris data from the man page with
your estimator specification:

> testing <-   errorest(Species ~ ., data=iris, model=lda, 
+ estimator = c("boot","632plus"), predict= mypredict.lda)
> testing

Call:
errorest.data.frame(formula = Species ~ ., data = iris, model = lda, 
    predict = mypredict.lda, estimator = c("boot", "632plus"))

         Bootstrap estimator of misclassification error 
         with 25 bootstrap replications

Misclassification error:  0.0235 
Standard deviation: 0.0028 


Call:
errorest.data.frame(formula = Species ~ ., data = iris, model = lda, 
    predict = mypredict.lda, estimator = c("boot", "632plus"))

         .632+ Bootstrap estimator of misclassification error 
         with 25 bootstrap replications

Misclassification error:  0.0222 
>               
> unclass(testing)
$boot
$boot$error
[1] 0.02351852

$boot$sd
[1] 0.002847447

$boot$bc632plus
[1] FALSE

$boot$nboot
[1] 25


$"632plus"
$"632plus"$error
[1] 0.02222817

$"632plus"$nboot
[1] 25

$"632plus"$bc632plus
[1] TRUE


$call
errorest.data.frame(formula = Species ~ ., data = iris, model = lda, 
    predict = mypredict.lda, estimator = c("boot", "632plus"))

Is this consistent with your results?

Max


LEGAL NOTICE\ Unless expressly stated otherwise, this messag...{{dropped}}

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to