In addition to the multinom(nnet) function mentioned below there is some literature on how one can divide such polytomous problems into an set of dichotomous classifications and then aggregate the results, e.g.:

1) one-vs-all
2) pairwise comparisons (aka [double] round-robin) (Führnkranz)
3) nested dichotomies
3) ensembles of nested dichotomies (aka ENDs) (Frank & Kramer)

The article by Eibe Frank & Stefan Kramer,

   Ensembles of nested dichotomies for multi-class problems
   http://wwwkramer.in.tum.de/kramer/frankkramer_icml04.pdf

firstly gives an concise overview of the various above strategies and compares their performance, arguing for the use of the method they have themselves devised, i.e. ENDs, and secondly provides references for articles describing the other methods in detail (e.g. Führnkranz). The strategies mentioned above have the advantage that they do not have a default class, in contrast to the multinom function.

Another question is whether any of these strategies have been implemented in a publicly avaiblable library? At least my recent cursory searches in the R-help archives and with help.search("...") have not produced any tangible results. I've managed to concoct a set of R-functions which crudely implement the strategies 1) one-vs-all and 2) pairwise comparisons, which I attach below. They are probably too much geared to my own research question and cut a few too many corners to be used more generally without substantial modification, and they could most probably be implemented in a more elegant manner, but they might nevertheless be of some inspiration.

Having hacked these solutions on my own it would be all too typical that some of the above multilevel classification strategies have in fact already been in implemented in an available library. So, is anyone on this list aware of such functions/libraries?

Regards,

        -Antti Arppe

======================================================================
Antti Arppe - Master of Science (Engineering)
Researcher & doctoral student (Linguistics)
E-mail: [EMAIL PROTECTED]
WWW: http://www.ling.helsinki.fi/~aarppe

>  13. Multiple logistic regression (Stephanie Delalieux)
> Date: Wed, 8 Mar 2006 14:15:58 +0100
> From: "Stephanie Delalieux" <[EMAIL PROTECTED]>
> Subject: [R] Multiple logistic regression
> To: <r-help@stat.math.ethz.ch>
>
> Is there a function in R that classifies data in more than > 2 groups using logistic regression/classification? I want to > compare the c-indices of earlier research (lrm, binary response > variables) with new c-indices obtained from 'multiple' (more > response variables) logistic regression.
Message: 23
Date: Wed, 8 Mar 2006 22:26:24 +0800
From: ronggui <[EMAIL PROTECTED]>
Subject: Re: [R] Multiple logistic regression
To: "Stephanie Delalieux" <[EMAIL PROTECTED]>
Cc: r-help@stat.math.ethz.ch

Do you mean multinomial logistic model?
If it is,the  multinom function in nnet package and multinomial
function in VGAM(http://www.stat.auckland.ac.nz/~yee) package can do
it.

8-----

1) dat: data (with the first column containing the multiclass variable which is being predicted)

2) fn: predictor variables as a string, e.g. fn <- "A + B + C". In this implementation, the predictor variables are assumed to be logical (and thus binary); therefore, the GLM model family=binomial, and should be changed if the data is of another sort.

3) lex: list with multiple classes being predicted, e.g.
lex <- c("a", "b", "c", "d")

4) freq: a Nx1 vector mapping frequency order of predicted classes to their actual order in (3) lex, needed for the double-round method for determining ties (-> alternative with the highest frequency selected)

5) teach.test.ratio: a list of length(2) indicating the proportions of the data to be used for teaching the models and testing,
e.g. c(1,1) -> 50% teach vs. 50% testing, c(2,1) -> 66.6% vs. 33.3%

6) iter: number of iteration rounds in evaluating the accuracy of classication performance

7) classifier: either 'double.round.robin' or 'one.vs.all'

repeated.tests <- 
function(dat,fn,lex,freq,teach.test.ratio=c(1,1),iter=1,hold.out=FALSE,classifier="double.round.robin",
 ...)
{ n.tot = nrow(dat);
  if(length(teach.test.ratio)==2)
    n.teach=round(teach.test.ratio[1]*n.tot/sum(teach.test.ratio));
  n.test = n.tot - n.teach; nlex <- length(lex);
  success <- 
matrix(c(n.teach,round(n.teach*100/n.tot,2),n.test,round(n.test*100/n.tot,2),0,0,0),iter,7,byrow=TRUE);
  colnames(success) <- c("Teach","%","Test","%","Success","%","tau (Kendall)");
  test.lx <- matrix(0,iter,nlex);
  colnames(test.lx) <- lex;
  success.lx <- guess.lx <- test.lx;
  for(i in 1:iter)
     { selected <- sample(seq(1:n.tot),n.teach,replace=hold.out);
       teach <- dat[selected,];
       test <- dat[-selected,];
       result <- switch(classifier,
         "double.round.robin" = double.round.robin(teach,test,fn,lex,freq),
         "one.vs.all" = one.vs.all(teach,test,fn,lex));
       for(j in 1:n.test)
          { test.lx[i,pos(result[j,1],lex)] <- 
test.lx[i,pos(result[j,1],lex)]+1;
            guess.lx[i,pos(result[j,2],lex)] <- 
guess.lx[i,pos(result[j,2],lex)]+1;
            if(result[j,1]==result[j,2])
              { success[i,5]=success[i,5]+1;
                success.lx[i,pos(result[j,1],lex)] <- success.lx[i, 
pos(result[j,1],lex)]+1;
              };
          };
       success[i,6]=round(success[i,5]*100/n.test,2);
       success[i,7] <- cor(result[,1],result[,2],method="kendall");
     };
  stats <- matrix(0,3,2);
  colnames(stats) <- c("Recall.Total", "Recall.Total.%");
  rownames(stats) <- c("Mean", "Std.Dev", "tau (Kendall)");
  stats[1,1] <- round(mean(success[,5]),1);
  stats[1,2] <- round(mean(success[,6]),2);
  stats[2,1] <- round(sd(success[,5]),1);
  stats[2,2] <- round(sd(success[,6]),2);
  stats[3,1] <- mean(success[,7]);
  stats[3,2] <- sd(success[,7]);
  stats.lx <- matrix(0,nlex,8);
  rownames(stats.lx) <- lex;
  colnames(stats.lx) <- c("Test.Mean", "Test/All.%", "Recall.Mean", "Recall.%", "Recall.Std.Dev", 
"Recall.Std.Dev.%", "Precision.Mean", "Precision.%");
  for(i in 1:nlex)
     { stats.lx[i,1] <- round(mean(test.lx[,i]),1);
       stats.lx[i,2] <- round(mean(test.lx[,i])*100/n.test,2);
       stats.lx[i,3] <- round(mean(success.lx[,i]),1);
       stats.lx[i,4] <- round(mean(success.lx[,i]/test.lx[,i])*100,2);
       stats.lx[i,5] <- round(sd(success.lx[,i]),1);
       stats.lx[i,6] <- round(sd(success.lx[,i]/test.lx[,i])*100,2);
       stats.lx[i,7] <- round(mean(guess.lx[,i]),1);
       stats.lx[i,8] <- round(mean(success.lx[,i]/guess.lx[,i]*100),2);
     }
  return(stats, success, stats.lx, test.lx, guess.lx, success.lx);
}

double.round.robin <- function(teach, test, fn, lex, freq, ...)
{ nlex=length(lex);
  preds <- prediction.matrix.pairwise(teach, test, fn, lex);
  npreds <- nrow(preds);
  comps <- cbind(test[,1],test[,1]);
  for(k in 1:npreds)
     { votes <- matrix(0,nlex);
       wins <- matrix(FALSE,nlex);
       nwins=0;
       for(i in 1:nlex)
          for(j in 1:nlex)
             if(i!=j)
               { if(j>=i) d=j-1 else d=j;
                 if(preds[k,(i-1)*(nlex-1)+d]>.5)
                   votes[i]=votes[i]+1
                 else
                   votes[j]=votes[j]+1;
               };
       for(i in 1:nlex)
          if(votes[i]==max(votes))
            { wins[i]=TRUE; nwins=nwins+1; };
       comps[k,1]<-lex[test[k,1]]; hit=FALSE;
       for(i in 1:nlex)
          if(wins[freq[i]]==TRUE && hit==FALSE)
            { comps[k,2]<-lex[freq[i]]; hit=TRUE; };
     };
return(comps);
}

one.vs.all <- function(teach, test, fn, lex, ...)
{ nlex=length(lex);
  preds <- prediction.matrix.one.vs.all(teach, test, fn, lex);
  npreds <- nrow(preds);
  comps <- matrix("",nrow(test),2);
  for(k in 1:npreds)
     { comps[k,1] <- lex[test[k,1]];
       comps[k,2] <- lex[which.max(preds[k,])];
     }
  return(comps);
}

prediction.matrix.pairwise <- function(teach, test, fn, lex, ...)
{ nlex <- length(lex);
  pred <- matrix(,dim(test)[1],0);
  for(i in 1:nlex)
     for(j in 1:nlex)
        if(lex[i]!=lex[j])
          { teach.glm <- glm.pairwise(teach, fn, lex[i], lex[j]);
            test.predict <- matrix(predict(teach.glm, newdata=test, 
type="response"),,1);
            colnames(test.predict) <- paste(c(lex[i], lex[j]), collapse="_");
            pred <- cbind(pred,test.predict);
          };
  return(pred);
}

prediction.matrix.one.vs.all <- function(teach, test, fn, lex, ...)
{ nlex <- length(lex);
  pred <- matrix(,nrow(test),0);
  for(i in 1:nlex)
     { teach.glm <- glm.one.vs.all(teach, fn, lex[i]);
       test.predict <- matrix(predict(teach.glm, newdata=test, 
type="response"),,1);
       colnames(test.predict) <- lex[i];
       pred <- cbind(pred,test.predict);
     };
  return(pred);
}

glm.pairwise <- function(dat,fn,lex1,lex2,...)
{ attach(dat);
  f <- as.formula(paste(c(lex1,fn),collapse=" ~ "));
  glm(formula = f,
  subset = (dat[lex1]==TRUE | dat[lex2]==TRUE),
  family=binomial)
}

glm.one.vs.all <- function(dat,fn,lex1,...)
{ attach(dat);
  f <- as.formula(paste(c(lex1,fn),collapse=" ~ "));
  glm(formula = f, family=binomial)
}

pos <- function (w,lex)
{ for(i in 1:length(lex))
     if(lex[i]==w) p=i;
  return(p);
}
______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to