This is very weird. Is this a bug in MASS QDA? On 3/11/06, Michael <[EMAIL PROTECTED]> wrote: > > Yes, I am using the MASS qda... How do I know which version is my MASS? I > should be using the latest one, since I constantly update my packages from > mirror site USA CA1. > > Very weird!!! > > ------------------------------- > Here is my code: > > > rm(list=ls(all=TRUE)) > library(MASS); > > temp=as.matrix(read.table('spam.train')); > temp2=as.matrix(read.table('spam.test')); > > #QDA Priors (0.5, 0.5) > lll <- qda((temp[, -58]), as.factor(temp[, 58]), prior=c(0.2, 0.8)); > > print('Priors (0.2, 0.8) QDA: Training ... '); > ttt=predict(lll, temp[, -58])$class; > cc1=table(temp[, 58], ttt); > print(cc1); > dd1=cc1 %*% matrix(1, 2, 1); > ee1=cc1 / as.vector(dd1); > print(ee1); > > > print('Priors (0.2, 0.8) QDA: Testing ... '); > ttt=predict(lll, temp2[, -58])$class; > cc2=table(temp2[, 58], ttt); > print(cc2); > dd2=cc2 %*% matrix(1, 2, 1); > ee2=cc2 / as.vector(dd2); > print(ee2); > > #QDA Proportional Priors > lll <- qda((temp[, -58]), as.factor(temp[, 58])); > > print('Proportional Priors QDA: Training ... '); > ttt=predict(lll, temp[, -58])$class; > cc1=table(temp[, 58], ttt); > print(cc1); > dd1=cc1 %*% matrix(1, 2, 1); > ee1=cc1 / as.vector(dd1); > print(ee1); > > > print('Proportional Priors QDA: Testing ... '); > ttt=predict(lll, temp2[, -58])$class; > cc2=table(temp2[, 58], ttt); > print(cc2); > dd2=cc2 %*% matrix(1, 2, 1); > ee2=cc2 / as.vector(dd2); > print(ee2); > > -------------------------------------------------- > > Here is the result: > > > [1] "Priors (0.2, 0.8) QDA: Training ... " > 0 1 > 0 1051 355 > 1 40 855 > > 0 1 > 0 0.74751067 0.25248933 > 1 0.04469274 0.95530726 > > [1] "Priors (0.2, 0.8) QDA: Testing ... " > 0 1 > 0 993 389 > 1 47 871 > > 0 1 > 0 0.71852388 0.28147612 > 1 0.05119826 0.94880174 > > [1] "Proportional Priors QDA: Training ... " > 0 1 > 0 1058 348 > 1 41 854 > > 0 1 > 0 0.75248933 0.24751067 > 1 0.04581006 0.95418994 > > [1] "Proportional Priors QDA: Testing ... " > > 0 1 > 0 999 383 > 1 47 871 > > 0 1 > 0 0.72286541 0.27713459 > 1 0.05119826 0.94880174 > > > > > On 3/11/06, Uwe Ligges <[EMAIL PROTECTED]> wrote: > > > > Michael wrote: > > > > > Hi all, > > > > > > If I run LDA on the same data (2-class classification) with default(no > > > > > priors specified in the lda function) vs. "prior=c(0.5, 0.5)", the > > results > > > are different. > > > > > > The (0.5, 0.5) priors give better 1-classify-to-1 rate, and the > > proportional > > > priors(default, no priors specified in the lda function) give better > > > 0-classify-to-0 rate, for both training and testing data sets. > > > > > > However, if I run QDA on the same data (2-class classification) with > > > default(no priors specified in the lda function) vs. "prior=c( 0.5, > > 0.5)", > > > the results are the same, > > > > > > i.e. the confusion tables are completely the same for two types of > > priors, I > > > even tried "qda" function with "prior=c(0.3, 0.7)" and other values, > > the > > > confusion tables are still the same... > > > > > > What might be the problem? > > > > > > Are we talking about the lda() and qda() implementations in package > > MASS? > > Which versions of R and MASS (?) are we talking about? > > Can you specify a reproducible example, please? > > > > The follwing example works for me: > > library(MASS) > > qdaObj <- qda(Species ~ ., data = iris, prior = c(1, 0, 0)) > > predict(qdaObj)$class > > > > Uwe Ligges > > > > > > > > > > > Thanks a lot! > > > > > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > > R-help@stat.math.ethz.ch mailing list > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide! > > http://www.R-project.org/posting-guide.html<http://www.r-project.org/posting-guide.html> > > > > >
[[alternative HTML version deleted]] ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html