The following dummy data frame has factor Q (with 2 levels) nesting factor P (with levels p1 and p2 nested under q1, and p3 and p4 nested under q2), but both crossing the random variate s, which has 8 levels. The dependent measure is dv. > # The data frame: > testnest dv s P Q 1 1 s1 p1 q1 2 2 s2 p1 q1 3 1 s3 p1 q1 4 2 s4 p1 q1 5 1 s5 p1 q1 6 3 s6 p1 q1 7 3 s7 p1 q1 8 4 s8 p1 q1 9 2 s1 p2 q1 10 3 s2 p2 q1 11 3 s3 p2 q1 12 1 s4 p2 q1 13 1 s5 p2 q1 14 2 s6 p2 q1 15 2 s7 p2 q1 16 3 s8 p2 q1 17 3 s1 p3 q2 18 3 s2 p3 q2 19 4 s3 p3 q2 20 1 s4 p3 q2 21 1 s5 p3 q2 22 1 s6 p3 q2 23 2 s7 p3 q2 24 2 s8 p3 q2 25 4 s1 p4 q2 26 3 s2 p4 q2 27 1 s3 p4 q2 28 2 s4 p4 q2 29 4 s5 p4 q2 30 1 s6 p4 q2 31 3 s7 p4 q2 32 1 s8 p4 q2
# The following aov() call is structurally correct with respect # to the design, and appropriate error-terms, but, as can be seen, # returns an error: > testnest.aov=aov(dv~Q+P%in%Q+Error(s+s:Q+s:P:Q),data=testnest) Warning message: Error() model is singular in: aov(dv ~ Q + P %in% Q + Error(s + s:Q + s:P:Q), data = testnest) # However, applying the summary() method to the aov output, produces the correct analysis: > summary(testnest.aov) Error: s Df Sum Sq Mean Sq F value Pr(>F) Residuals 7 5.8750 0.8393 Error: s:Q Df Sum Sq Mean Sq F value Pr(>F) Q 1 0.1250 0.1250 0.068 0.8018 Residuals 7 12.8750 1.8393 Error: s:Q:P Df Sum Sq Mean Sq F value Pr(>F) Q:P 2 0.250 0.125 0.1111 0.8956 Residuals 14 15.750 1.125 I have tried many different ways of denoting the Error() partitioning, but can't find one that produces both the correct analysis *AND* no singularity error on the aov() call. Any suggestions? -- Please avoid sending me Word or PowerPoint attachments. See <http://www.gnu.org/philosophy/no-word-attachments.html> -Dr. John R. Vokey ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html