Hello,

Apologies if this is the wrong list, I am a first-time poster here. I 
have an experiment in which an output is measured in response to 42 
different categories.
I am only interested which of the categories is significantly different 
from a reference category.

Here is the summary of the results:

summary(simple.fit)

Call:
lm(formula = as.numeric(as.vector(TNFa)) ~ Mutant.ID, data = 
imputed.data)

Residuals:
      Min       1Q   Median       3Q      Max
-238.459  -25.261   -0.868   25.660  309.496

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  49.0479    10.5971   4.628 5.08e-06 ***
Mutant.IDB  149.8070    23.1632   6.467 3.09e-10 ***
Mutant.IDC   98.7443    23.1632   4.263 2.55e-05 ***
Mutant.IDD   97.2203    23.1632   4.197 3.37e-05 ***
Mutant.IDE  118.9820    23.1632   5.137 4.49e-07 ***
Mutant.IDF  241.8537    23.1632  10.441  < 2e-16 ***
Mutant.IDG  107.4883    23.1632   4.640 4.80e-06 ***
Mutant.IDH  105.7664    23.1632   4.566 6.74e-06 ***
Mutant.IDI  517.4650    23.1632  22.340  < 2e-16 ***
Mutant.IDJ   19.7777    23.1632   0.854 0.393735
Mutant.IDK   47.4240    23.1632   2.047 0.041313 *
Mutant.IDL    3.2542    23.1632   0.140 0.888347
Mutant.IDM  180.9638    23.1632   7.813 5.63e-14 ***
Mutant.IDN   19.0582    23.1632   0.823 0.411155
Mutant.IDO   61.8684    23.1632   2.671 0.007891 **
Mutant.IDP   -0.5306    23.1632  -0.023 0.981738
Mutant.IDQ  -10.6972    23.1632  -0.462 0.644478
Mutant.IDR    1.5377    23.1632   0.066 0.947107
Mutant.IDS   14.6333    23.1632   0.632 0.527934
Mutant.IDT   48.8900    23.1632   2.111 0.035458 *
Mutant.IDU   58.9597    23.1632   2.545 0.011313 *
Mutant.IDV   81.7657    23.1632   3.530 0.000467 ***
Mutant.IDW   82.9576    23.1632   3.581 0.000386 ***
Mutant.IDY   49.1926    23.1632   2.124 0.034343 *
Mutant.IDZ   51.0381    23.1632   2.203 0.028170 *
Mutant.IDZA 116.0487    23.1632   5.010 8.38e-07 ***
Mutant.IDZB  56.4402    23.1632   2.437 0.015287 *
Mutant.IDZC -14.5305    23.1632  -0.627 0.530838
Mutant.IDZD  -5.0069    23.1632  -0.216 0.828983
Mutant.IDZE   9.1176    23.1632   0.394 0.694080
Mutant.IDZF 232.2879    23.1632  10.028  < 2e-16 ***
Mutant.IDZG -27.1671    23.1632  -1.173 0.241595
Mutant.IDZH   0.8757    23.1632   0.038 0.969862
Mutant.IDZI   4.7952    23.1632   0.207 0.836108
Mutant.IDZJ  -5.5859    23.1632  -0.241 0.809568
Mutant.IDZK -12.9263    23.1632  -0.558 0.577138
Mutant.IDZL  38.8621    23.1632   1.678 0.094224 .
Mutant.IDZM  39.2643    23.1632   1.695 0.090880 .
Mutant.IDZN  73.8419    23.1632   3.188 0.001553 **
Mutant.IDZO 147.7804    23.1632   6.380 5.20e-10 ***
Mutant.IDZP   0.5654    23.1632   0.024 0.980540
Mutant.IDZQ  50.5117    23.1632   2.181 0.029824 *
Mutant.IDZR 217.6824    23.1632   9.398  < 2e-16 ***
Mutant.IDZS 237.3227    23.1632  10.246  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 61.79 on 377 degrees of freedom
Multiple R-Squared: 0.7351,     Adjusted R-squared: 0.7049
F-statistic: 24.33 on 43 and 377 DF,  p-value: < 2.2e-16

 >

My question relates to the meaning of the p-values. Do the p-values 
relate to
a) the confidence in the estimate
or
b)the confidence that the non-intercept categories are different to the 
intercept

Somebody mentioned to me that the p-value for the intercept is the 
confidence in the estimate of the intercept, whereas the remaining 
entries are the confidence in each strain being different from the 
reference / intercept

Note the contrasts setting is contr.treatment.

Any help would be appreciated

Andrew McDonagh,
PhD Candidate,
Department of Infectious Diseases,
Commonwealth Building,
Hammersmith Hospital,
Du Cane Road,
London W12 ONN

[EMAIL PROTECTED]

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to