I wrote: > On p. 48 of "Statistics Complements" to the 3rd MASS edition, > http://www.stats.ox.ac.uk/pub/MASS3/VR3stat.pdf > I read that the orthogonal rotations of Z Lambda^-1 remain > uncorrelated, where Z is the PC and Lambda is the diag matrix of > singular values. However, the example below that text is > > A <- loadings(ir.pca) %*% diag(ir.pca$sdev) > If ir.pca$sdev are the singular values, should that be diag(1 / > ir.pca$sdev), or is it some discrepancy between S+ and R that I'm > missing?
To dwell some more on this and in hopes to get replies I did a small experimantation (below) that makes me to suspect that the correct syntax is A <- loadings(ir.pca) %*% diag(1/ir.pca$sdev). Any comments? library(MASS) a <- 1; b <- 0.2; c <- -.3; d <- .7 x <- scale(mvrnorm(n=1000,c(0,0,0),matrix(c(a,b,c, b,a,d, c,d,a),3,3))) e <- eigen(cov(x)) cat("expect identity corr for orthogonal rotations:\n") zs <- e$vectors %*% diag(1/sqrt(e$values)) pdx <- x %*% varimax(zs, normalize = FALSE)$loadings print.table(cor(pdx), digits=2) cat("expect zero: ", prcomp(x)$sdev - sqrt(e$values), "\n") cat("Now zero corr between projections is not preserved:\n") zs <- e$vectors %*% diag(sqrt(e$values)) pdx <- x %*% varimax(zs, normalize = FALSE)$loadings print.table(cor(pdx), digits=2) Output: expect identity corr for orthogonal rotations: [,1] [,2] [,3] [1,] 1.0e+00 -3.0e-16 -4.5e-16 [2,] -3.0e-16 1.0e+00 2.3e-16 [3,] -4.5e-16 2.3e-16 1.0e+00 expect zero: 4.440892e-16 2.220446e-16 2.775558e-16 Now zero corr between projections is not preserved: [,1] [,2] [,3] [1,] 1.00 -0.35 -0.88 [2,] -0.35 1.00 -0.11 [3,] -0.88 -0.11 1.00 ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html