Dear all, I am currently analyzing count data from a hierarchical design, and I?ve tried to follow the suggestions for a correct estimation of p-values as discusssed at R-Wiki (http://wiki.r-project.org/rwiki/doku.php?id=guides:lmer-tests&s=lme%20and%20aov).
However, I have the problem that my model only consists of parameters with just 1 d.f. (intercepts, slopes), so that the "mcmcpvalue" function defined below obviously produces error messages. How can I proceed in estimating the p-values, then? I very much acknowledge any suggestions. Best regards Christoph. ## mcmcpvalue <- function(samp) { std <- backsolve(chol(var(samp)), cbind(0, t(samp)) - colMeans(samp), transpose = TRUE) sqdist <- colSums(std * std) sum(sqdist[-1] > sqdist[1])/nrow(samp) } m1<-lmer(number_pollinators~logpatch+loghab+landscape_diversity+(1|site),quasipoisson) Generalized linear mixed model fit using Laplace Formula: number_pollinators ~ logpatch + loghab + landscape_diversity + (1 | site) Data: primula Family: quasipoisson(log link) AIC BIC logLik deviance 84.83 93.75 -37.42 74.83 Random effects: Groups Name Variance Std.Dev. site (Intercept) 0.036592 0.19129 Residual 1.426886 1.19452 number of obs: 44, groups: site, 15 Fixed effects: Estimate Std. Error t value (Intercept) -0.4030 0.6857 -0.5877 logpatch 0.1091 0.0491 2.2228 loghab 0.0875 0.0732 1.1954 landscape_diversity 1.0234 0.4850 2.1099 Correlation of Fixed Effects: (Intr) lgptch loghab logpatch 0.091 loghab -0.637 -0.121 lndscp_dvrs -0.483 -0.098 -0.348 markov1=mcmcsamp(m1,5000) HPDinterval(markov1) mcmcpvalue(as.matrix(markov1)[,1]) Error in colMeans(samp) : 'x' must be an array of at least two dimensions ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.