Thanks Roger for your quick answer.

I'll follow your advise.

Now, assuming that lambda is << 1, could I use
fitted.values from GMErrorsar output to compute the (average)response
variable?  I think of:

mean(fitted.value) = mean(response -noise) ~= mean(response)

provided that the mean(noise) ~= zero if the mean is computed over more than
30 points.

Please be as kind as to advise on that,

Thanks,

Radu

On Wed, Apr 13, 2011 at 4:44 AM, Roger Bivand <[email protected]> wrote:

> On Tue, 12 Apr 2011, Mihail Rosu wrote:
>
> Dear list,
>>
>> I'm using a 3rd party code to (spatially) analyse the dependence of crops
>> yields (YLD) on soil types (MUSYM).  Consider the model
>>
>> model<- YLD ~ MUSYM -1
>>
>> The lm() function ouputs as coefficients the average YLD for the various
>> soils (see below). I'm confused about the interpretation of coefficients
>> outputed by GMerrorsar(). They are kind of twice smaller than the average
>> YLD !?!?
>>
>
> Use GM methods with spatial data with great care! Note that the spatial
> coefficient estimate is outside its range (for your row standardised sptial
> weights, it should be strictly less than 1). You can try to tune the
> optimizer used, but in general maximum likelihood is to be prefered. If you
> use spautolm() or errorsarlm() with method="Matrix", you should get the
> exact results you need, or try method="MC" or method="Chebyshev" for
> approximations.
>
> Hope this helps,
>
> Roger
>
>
>
>> Please help on "how to compute the predicted YLD from the GMerrorsar()
>> output". Should I use the "fitted.values" instead of the coefficients?
>>
>> much thanks,
>>
>> Radu
>>
>> diagnostics<-lm(model, data)
>>> summary(diagnostics)
>>>
>>
>> Call:
>> lm(formula = model, data = data)
>>
>> Residuals:
>>   Min      1Q  Median      3Q     Max
>> -44.006  -2.489   2.948   7.258  32.591
>>
>> Coefficients:
>>       Estimate Std. Error t value Pr(>|t|)
>> MUSYMBa  42.1410     0.2279  184.90   <2e-16 ***
>> MUSYMBe  39.1673     0.3420  114.52   <2e-16 ***
>> MUSYMBf  19.5921     0.5783   33.88   <2e-16 ***
>> MUSYMCa  33.1261     0.2935  112.88   <2e-16 ***
>> MUSYMCh  43.6497     0.1580  276.21   <2e-16 ***
>> MUSYMCn  41.7622     0.1309  318.98   <2e-16 ***
>> MUSYMDa  37.1995     0.5189   71.69   <2e-16 ***
>> MUSYMSb  38.3553     0.2168  176.93   <2e-16 ***
>> MUSYMTa  44.0064     0.3164  139.10   <2e-16 ***
>> ---
>> Signif. codes:  0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
>>
>> Residual standard error: 12.32 on 26679 degrees of freedom
>> Multiple R-squared: 0.9171,     Adjusted R-squared: 0.917
>> F-statistic: 3.278e+04 on 9 and 26679 DF,  p-value: < 2.2e-16
>>
>>
>> dW <- dnearneigh(coords, 0, dist)
>> dlist <- nbdists(dW, coords)
>> idlist <- lapply(dlist, function(x) 1/x)
>> W <- nb2listw(dW, glist=idlist, style="W")
>>
>> #Performs spatial error process model with empirically determined spatial
>> weights matrix
>>
>> SEM<-GMerrorsar(model,data=data, W, na.action=na.exclude,
>> zero.policy=TRUE)
>>
>> summary(SEM)
>>>
>>
>> Call:GMerrorsar(formula = model, data = data, listw = W, na.action =
>> na.exclude,     zero.policy = TRUE)
>>
>> Residuals:
>>      Min         1Q     Median         3Q        Max
>> -46.788453  -2.508823   0.024350   2.486553  37.375018
>>
>> Type: GM SAR estimator
>> Coefficients: (GM standard errors)
>>       Estimate Std. Error z value  Pr(>|z|)
>> MUSYMBa  17.7399     2.3552  7.5322 4.996e-14
>> MUSYMBe  21.8829     2.3987  9.1229 < 2.2e-16
>> MUSYMBf  16.4898     2.4502  6.7299 1.698e-11
>> MUSYMCa  21.3378     2.4094  8.8561 < 2.2e-16
>> MUSYMCh  18.8470     2.3216  8.1182 4.441e-16
>> MUSYMCn  18.8399     2.3164  8.1332 4.441e-16
>> MUSYMDa  19.5054     2.4220  8.0533 8.882e-16
>> MUSYMSb  19.0423     2.3655  8.0501 8.882e-16
>> MUSYMTa  19.2016     2.3662  8.1150 4.441e-16
>>
>> Lambda: 1.0157
>> Number of observations: 26688
>> Number of parameters estimated: 11
>>
>>        [[alternative HTML version deleted]]
>>
>>
>>
> --
> Roger Bivand
> Economic Geography Section, Department of Economics, Norwegian School of
> Economics and Business Administration, Helleveien 30, N-5045 Bergen,
> Norway. voice: +47 55 95 93 55; fax +47 55 95 95 43
> e-mail: [email protected]
>
>

        [[alternative HTML version deleted]]

_______________________________________________
R-sig-Geo mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/r-sig-geo

Reply via email to