On 24/08/17 10:23, Roger Bivand wrote:
On Thu, 24 Aug 2017, [email protected] wrote:
Dear list
I am searching alternatives to ESRI shapefiles for the storage of GPS
data, i.e. tagged point features, and came across SpatialLite or
Geopackage. Unfortunately writing to both formats is very slow
compared to shapefiles making practical use impossible.
library(sf)
library(rgdal)
library(RSQLite)
n<- 1000
d <-data.frame(a=1:n, X=rnorm(n,1,1), Y=rnorm(n,1,1))
mp1 <- st_as_sf(d, coords=c("X","Y"))
t1 <- system.time(st_write(mp1, dsn = 'C:/Temp/data1.shp', driver =
'ESRI Shapefile'))
t2 <- system.time(st_write(mp1, dsn = 'C:/Temp/test.sqlite', layer =
'data1', driver = 'SQLite'))
t3 <- system.time(st_write(mp1, "C:/Temp/data1.gpkg"))
rbind(t1,t2,t3)[,1:3]
user.self sys.self elapsed
t1 0.03 0.03 0.09
t2 0.53 5.04 29.33
t3 0.48 4.29 32.19
As n increases, processing time explodes for SpatialLite and
Geopackage, and I usually have a couple of 10000 points to store. Any
experiences of others would be highly appreciated.
Fedora 26 64-bit:
n 1000
rbind(t1,t2,t3)[,1:3]
user.self sys.self elapsed
t1 0.007 0.001 0.010
t2 0.067 0.035 0.103
t3 0.029 0.042 0.073
n 25000
rbind(t1,t2,t3)[,1:3]
user.self sys.self elapsed
t1 0.120 0.032 0.153
t2 0.412 0.829 1.247
t3 0.645 0.834 1.487
R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Fedora 26 (Workstation Edition)
other attached packages:
[1] sf_0.5-3
loaded via a namespace (and not attached):
[1] compiler_3.4.1 magrittr_1.5 tools_3.4.1 DBI_0.7
units_0.4-5
[6] Rcpp_0.12.12 udunits2_0.13 grid_3.4.1
I also get large differences on ubuntu 16.04 64-bits with ssd;
particularly when writing a second layer to an existing geopackage
library(sf)
n <- 1000
d <- data.frame(a=1:n, X=rnorm(n,1,1), Y=rnorm(n,1,1))
mp1 <- st_as_sf(d, coords=c("X","Y"))
td <- tempdir()
file.remove(list.files(td, full.names = TRUE))
t1 <- system.time(st_write(mp1, dsn = file.path(td, 'data1.shp'), driver
= 'ESRI Shapefile'))
t2 <- system.time(st_write(mp1, dsn = file.path(td, 'data2.sqlite'),
layer = 'layer1', driver = 'SQLite'))
t3 <- system.time(st_write(mp1, dsn = file.path(td, 'data2.sqlite'),
layer = 'layer2', driver = 'SQLite'))
t4 <- system.time(st_write(mp1, dsn = file.path(td, 'data3.gpkg'), layer
= 'layer1'))
t5 <- system.time(st_write(mp1, dsn = file.path(td, 'data3.gpkg'), layer
= 'layer2'))
rbind(t1,t2,t3,t4,t5)[,1:3]
user.self sys.self elapsed
t1 0.012 0.000 0.010
t2 0.180 0.456 8.993
t3 0.220 0.460 10.637
t4 0.016 0.064 0.082
t5 0.200 0.472 9.199
R version 3.4.0 (2017-04-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.2 LTS
other attached packages:
[1] sf_0.5-3 raster_2.5-8 sp_1.2-4
loaded via a namespace (and not attached):
[1] compiler_3.4.0 magrittr_1.5 DBI_0.6-1 tools_3.4.0
units_0.4-5 yaml_2.1.14 Rcpp_0.12.10 udunits2_0.13
grid_3.4.0 lattice_0.20-35
Cheers,
Loïc
There is no need to load rgdal or RSQLite, neither are needed or used.
For portability use tempdir():
t1 <- system.time(st_write(mp1, dsn = paste0(td, 'data1.shp')))
t2 <- system.time(st_write(mp1, dsn = paste0(td, 'test.sqlite'), layer =
'data1', driver = 'SQLite'))
t3 <- system.time(st_write(mp1, paste0(td, 'data1.gpkg')))
Maybe an order of magnitude difference because the databases need
initialising, but nothing like your scale; does 32/64 bit make a
difference?
I'm assuming that you installed sf as a Windows binary from CRAN?
Consider using a github issue when others have tried tis out on other
platforms.
Roger
Many thanks
Manuel
------
R version 3.4.1 (2017-06-30)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 7 (build 7601) Service Pack 1
Matrix products: default
locale:
[1] LC_COLLATE=German_Switzerland.1252 LC_CTYPE=German_Switzerland.1252
[3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C
[5] LC_TIME=German_Switzerland.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] sf_0.5-3 RSQLite_2.0 rgdal_1.2-8 sp_1.2-5
loaded via a namespace (and not attached):
[1] Rcpp_0.12.12 lattice_0.20-35 digest_0.6.12 grid_3.4.1
DBI_0.7
[6] magrittr_1.5 units_0.4-5 rlang_0.1.2 blob_1.1.0
tools_3.4.1
[11] udunits2_0.13 bit64_0.9-7 bit_1.1-12 compiler_3.4.1
memoise_1.1.0
[16] tibble_1.3.4
_______________________________________________
R-sig-Geo mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/r-sig-geo
_______________________________________________
R-sig-Geo mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/r-sig-geo