On 24/08/17 10:23, Roger Bivand wrote:
On Thu, 24 Aug 2017, [email protected] wrote:

Dear list

I am searching alternatives to ESRI shapefiles for the storage of GPS data, i.e. tagged point features, and came across SpatialLite or Geopackage. Unfortunately writing to both formats is very slow compared to shapefiles making practical use impossible.

library(sf)
library(rgdal)
library(RSQLite)

n<- 1000
d <-data.frame(a=1:n, X=rnorm(n,1,1), Y=rnorm(n,1,1))
mp1 <- st_as_sf(d, coords=c("X","Y"))

t1 <- system.time(st_write(mp1, dsn = 'C:/Temp/data1.shp', driver = 'ESRI Shapefile')) t2 <- system.time(st_write(mp1, dsn = 'C:/Temp/test.sqlite', layer = 'data1', driver = 'SQLite'))
t3 <- system.time(st_write(mp1, "C:/Temp/data1.gpkg"))

rbind(t1,t2,t3)[,1:3]

  user.self sys.self elapsed
t1      0.03     0.03    0.09
t2      0.53     5.04   29.33
t3      0.48     4.29   32.19

As n increases, processing time explodes for SpatialLite and Geopackage, and I usually have a couple of 10000 points to store. Any experiences of others would be highly appreciated.

Fedora 26 64-bit:

n 1000

rbind(t1,t2,t3)[,1:3]
    user.self sys.self elapsed
t1     0.007    0.001   0.010
t2     0.067    0.035   0.103
t3     0.029    0.042   0.073

n 25000

rbind(t1,t2,t3)[,1:3]
    user.self sys.self elapsed
t1     0.120    0.032   0.153
t2     0.412    0.829   1.247
t3     0.645    0.834   1.487

R version 3.4.1 (2017-06-30)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Fedora 26 (Workstation Edition)
other attached packages:
[1] sf_0.5-3

loaded via a namespace (and not attached):
[1] compiler_3.4.1 magrittr_1.5   tools_3.4.1    DBI_0.7
   units_0.4-5
[6] Rcpp_0.12.12   udunits2_0.13  grid_3.4.1


I also get large differences on ubuntu 16.04 64-bits with ssd; particularly when writing a second layer to an existing geopackage

library(sf)

n <- 1000
d <- data.frame(a=1:n, X=rnorm(n,1,1), Y=rnorm(n,1,1))
mp1 <- st_as_sf(d, coords=c("X","Y"))

td <- tempdir()
file.remove(list.files(td, full.names = TRUE))

t1 <- system.time(st_write(mp1, dsn = file.path(td, 'data1.shp'), driver = 'ESRI Shapefile')) t2 <- system.time(st_write(mp1, dsn = file.path(td, 'data2.sqlite'), layer = 'layer1', driver = 'SQLite')) t3 <- system.time(st_write(mp1, dsn = file.path(td, 'data2.sqlite'), layer = 'layer2', driver = 'SQLite')) t4 <- system.time(st_write(mp1, dsn = file.path(td, 'data3.gpkg'), layer = 'layer1')) t5 <- system.time(st_write(mp1, dsn = file.path(td, 'data3.gpkg'), layer = 'layer2'))

rbind(t1,t2,t3,t4,t5)[,1:3]

   user.self sys.self elapsed
t1     0.012    0.000   0.010
t2     0.180    0.456   8.993
t3     0.220    0.460  10.637
t4     0.016    0.064   0.082
t5     0.200    0.472   9.199

R version 3.4.0 (2017-04-21)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.2 LTS

other attached packages:
[1] sf_0.5-3     raster_2.5-8 sp_1.2-4

loaded via a namespace (and not attached):
[1] compiler_3.4.0 magrittr_1.5 DBI_0.6-1 tools_3.4.0 units_0.4-5 yaml_2.1.14 Rcpp_0.12.10 udunits2_0.13 grid_3.4.0 lattice_0.20-35

Cheers,
Loïc

There is no need to load rgdal or RSQLite, neither are needed or used. For portability use tempdir():

t1 <- system.time(st_write(mp1, dsn = paste0(td, 'data1.shp')))
t2 <- system.time(st_write(mp1, dsn = paste0(td, 'test.sqlite'), layer = 'data1', driver = 'SQLite'))
t3 <- system.time(st_write(mp1, paste0(td, 'data1.gpkg')))

Maybe an order of magnitude difference because the databases need initialising, but nothing like your scale; does 32/64 bit make a difference?

I'm assuming that you installed sf as a Windows binary from CRAN?

Consider using a github issue when others have tried tis out on other platforms.

Roger

Many thanks
Manuel


------
R version 3.4.1 (2017-06-30)
Platform: i386-w64-mingw32/i386 (32-bit)
Running under: Windows 7 (build 7601) Service Pack 1

Matrix products: default

locale:
[1] LC_COLLATE=German_Switzerland.1252  LC_CTYPE=German_Switzerland.1252
[3] LC_MONETARY=German_Switzerland.1252 LC_NUMERIC=C
[5] LC_TIME=German_Switzerland.1252

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base

other attached packages:
[1] sf_0.5-3    RSQLite_2.0 rgdal_1.2-8 sp_1.2-5

loaded via a namespace (and not attached):
[1] Rcpp_0.12.12 lattice_0.20-35 digest_0.6.12 grid_3.4.1 DBI_0.7 [6] magrittr_1.5 units_0.4-5 rlang_0.1.2 blob_1.1.0 tools_3.4.1 [11] udunits2_0.13 bit64_0.9-7 bit_1.1-12 compiler_3.4.1 memoise_1.1.0
[16] tibble_1.3.4

_______________________________________________
R-sig-Geo mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/r-sig-geo



_______________________________________________
R-sig-Geo mailing list
[email protected]
https://stat.ethz.ch/mailman/listinfo/r-sig-geo

Reply via email to