On Tue, 6 Nov 2007, ONKELINX, Thierry wrote:

>
> Maybe spautolm() rescales the coordinates before calculating the model
> parameters. In that case maybe het units mod1$fit are in the new scale
> and the units of summary() in the original scale.

No, no rescaling or other tricks. The code is quite clear, the returned 
matrix is not premultiplied by s^2 - see my other reply.

Roger

>
> HTH,
>
> Thierry
>
> ------------------------------------------------------------------------
> ----
> ir. Thierry Onkelinx
> Instituut voor natuur- en bosonderzoek / Research Institute for Nature
> and Forest
> Cel biometrie, methodologie en kwaliteitszorg / Section biometrics,
> methodology and quality assurance
> Gaverstraat 4
> 9500 Geraardsbergen
> Belgium
> tel. + 32 54/436 185
> [EMAIL PROTECTED]
> www.inbo.be
>
> Do not put your faith in what statistics say until you have carefully
> considered what they do not say.  ~William W. Watt
> A statistical analysis, properly conducted, is a delicate dissection of
> uncertainties, a surgery of suppositions. ~M.J.Moroney
>
> -----Oorspronkelijk bericht-----
> Van: [EMAIL PROTECTED]
> [mailto:[EMAIL PROTECTED] Namens Sam Field
> Verzonden: maandag 5 november 2007 23:19
> Aan: [EMAIL PROTECTED]
> CC: r-sig-geo@stat.math.ethz.ch
> Onderwerp: Re: [R-sig-Geo] spautolm - standard errors of regression
> paramters
>
> thanks Roger!
>
>
> In my haste, I mistyped.  I meant to write:
>
>
> sqrt(diag(mod1$fit[["imat"]]))
>
>
> which should be equivalent to
>
>
> summary(mod1)$Coef[,2],
>
> the standard errors of the regression coefficients.
>
>
> In any case, I have managed to replicate the case where the two commands
> produce different results. Using the "columbus data"...
>
>
> library(spdep)
> data(columbus)
>
> #defining W
>
> columbus_poly <- readShapePoly(system.file("etc/shapes/columbus.shp",
> package="spdep")[1])
> columbus_nb <- poly2nb(columbus_poly)
> columbus_listw <- nb2listw(columbus_nb)
>
> #running spautolm()
>
> mod1 <- spautolm(CRIME ~ HOVAL +  DISCBD,listw=columbus_listw,data =
> columbus,family="SAR")
>
>
> sqrt(diag(mod1$fit[["imat"]]))
>
> summary(mod1)$Coef[,2]
>
>
>
> and the result:
>
>
>> sqrt(diag(mod1$fit[["imat"]]))
> (Intercept)       HOVAL      DISCBD
> 0.468345807 0.009013047 0.146973631
>
>
>> summary(mod1)$Coef[,2]
> (Intercept)       HOVAL      DISCBD
> 4.68573639  0.09017431  1.47045128
>
>
> looks like the decimal place is shifted over one place.  If you add more
> variables to the model, the results differ by more then a decimal place
> in this case (in my case the results are very different). For example,
>
>
> mod2 <- spautolm(CRIME ~ HOVAL +  DISCBD + INC +
> PLUMB,listw=columbus_listw,data = columbus,family="SAR")
>
> sqrt(diag(mod2$fit[["imat"]]))
>
> summary(mod2)$Coef[,2]
>
>
> results in:
>
>> sqrt(diag(mod2$fit[["imat"]]))
> (Intercept)       HOVAL      DISCBD         INC       PLUMB
> 0.52884967  0.01002545  0.17186710  0.03379109  0.04940024
>>
>> summary(mod2)$Coef[,2]
> (Intercept)       HOVAL      DISCBD         INC       PLUMB
> 4.86800598  0.09228322  1.58201870  0.31104348  0.45472408
>
>
> Initially, I just wanted the standard errors so that I could write them
> out in a text file and put them in a table for a MSWord document.
> However, I will also need the covariances of the parameters and, thus,
> need the off diagonal elements
> of the variance covariance matrix.   Am I reading this matrix
> incorrectly?
>
>
> thanks for all of your help!
>
> Sam
>
>
>
>
>
>
>
>
>
> Quoting Roger Bivand <[EMAIL PROTECTED]>:
>
>> On Mon, 5 Nov 2007, Sam Field wrote:
>>
>>> List,
>>>
>>> I would like to grab the standard errors of the regression
>>> parameters from
>> an
>>> spautolm object.  Currently I am using...
>>>
>>> mod1 <- spautolm(y~var1 + var2,....)
>>>
>>> mod1_sd <-  (diag(mod1$fit[["imat"]])^2
>>
>> As with most model fitting functions, you use the summary method, so
>>
>> summary(mod1)$Coef
>>
>> is a four-column matrix, and
>>
>> summary(mod1)$Coef[,2]
>>
>> is the column you want.
>>
>> Roger
>>
>> PS. Reading summary.spautolm shows that the diagonal values of the
>> matrix you refer to are the squares of the SE values.
>>
>>>
>>>
>>> This does produce a vector of the diagonal elements of a matrix that
>
>>> look
>> like a
>>> variance covariance matrix (correct dimensions and row and column
>>> labels),
>> but
>>> the values I get do not agree with what the summary() function
>>> displays --
>> they
>>> also seem implausibly small.
>>>
>>> any hints?
>>>
>>> Thanks!
>>>
>>> Sam
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>
>> --
>> Roger Bivand
>> Economic Geography Section, Department of Economics, Norwegian School
>> of Economics and Business Administration, Helleveien 30, N-5045
>> Bergen, Norway. voice: +47 55 95 93 55; fax +47 55 95 95 43
>> e-mail: [EMAIL PROTECTED]
>>
>>
>
>
> --
> ********Note the new contact information*******
>
> Samuel H. Field, Ph.D.
> Senior Research Investigator
> CHERP/Division of Internal Medicine - University of Pennsylvania
> Philadelphia VA Medical Center 3900 Woodland Ave (9 East) Philadelphia,
> PA 19104
> (215) 823-5800 EXT. 6155 (Office)
> (215) 823-6330 (Fax)
>
> _______________________________________________
> R-sig-Geo mailing list
> R-sig-Geo@stat.math.ethz.ch
> https://stat.ethz.ch/mailman/listinfo/r-sig-geo
>

-- 
Roger Bivand
Economic Geography Section, Department of Economics, Norwegian School of
Economics and Business Administration, Helleveien 30, N-5045 Bergen,
Norway. voice: +47 55 95 93 55; fax +47 55 95 95 43
e-mail: [EMAIL PROTECTED]

_______________________________________________
R-sig-Geo mailing list
R-sig-Geo@stat.math.ethz.ch
https://stat.ethz.ch/mailman/listinfo/r-sig-geo

Reply via email to