Dear all, I'd appreciate some advice on the following problem. I'm attempting to analyse a nested cross-sectional design in which an intervention was offered to a series of randomly selected (small) communities, so the unit of randomisation is the community. All available individuals in each community were interviewed before the intervention and again at follow-up post-intervention. The set of available individuals at baseline and at follow-up were far from identical (a common feature of such designs). Similarly, a series of control communities were interviewed. This type of design is used in epidemiological studies particularly in intervention designed to alter lifestyle factors. Such designs tend to be highly unbalanced Murray et al. discuss the appropriate analysis of such studies (Analysis of data from group-randomized trials with repeat observations on the same groups, Stats in Med. 17, 1581-1600). They offer three examples of SAS code - one of which is as follow:
proc mixed;
 class cond unit timecat;
  model y=cond timecat cond*timecat/ddfm=res;
  random int timecat/subject=unit(cond);
run;

cond is 0/1 corresponding to control/intervention
timecat is 0/1 corresponding to baseline/follow-up
unit is 1 to 39 and identifies the communities.
and y is a continuous score

I've read the random statement as cond nested within unit and crossed (?) by timecat. Unfortunately I'm not familiar with SAS code. I would expect random effects for unit and timecat X unit

I would much appreciate any suggestions on how to code the above? in lmer o rnlme.

Alan Kelly
Trinity College Dublin

_______________________________________________
R-SIG-Mac mailing list
R-SIG-Mac@stat.math.ethz.ch
https://stat.ethz.ch/mailman/listinfo/r-sig-mac

Reply via email to