In case it might be useful, I recently self-published a tutorial on mixed and 
phylogenetic models:



Mixed and Phylogenetic Models: A Conceptual Introduction to Correlated Data

Anthony R. Ives



You can download it for free at https://leanpub.com/correlateddata. And please, 
do get it for free. I'm just using leanpub.com because it provides a nice 
platform and notifies downloaders when I update the book.



Summary



This book introduces the concepts behind statistical methods used to analyze 
data with correlated error structures. While correlated data arise in many 
ways, the focus is on ecological and evolutionary data, and two types of 
correlations: correlations generated by the hierarchical nature of the sampling 
(e.g., plots sampled within sites) and correlations generated by the 
phylogenetic relationships among species.



The book is integrated with R code that illustrates every point. Although it is 
possible to read the book without the code, or work through the code without 
the book, they are designed to go hand-in-hand. The R code comes with the 
complete downloadable package of the book on leanpub.com; if you have problems 
downloading it, please contact me.



Chapter 1, Multiple Methods for Analyzing Hierarchical Data

Chapter 2, Good Statistical Properties

Chapter 3, Phylogenetic Comparative Methods

Chapter 4, Phylogenetic Community Ecology



Background you'll need



Although the book is titled an introduction, it is an introduction to the 
concepts behind the methods discussed, not so much the methods themselves. It 
assumes that you understand basic statistical concepts (such as random 
variables) and know R and how to run mixed and phylogenetic models. I think 
that in many cases, the best way of learning is by doing. On the other hand, 
there is no substitute for getting a good background in the basics of 
statistical analyses and R before launching off into the more complicated 
material in this book.



Acknowledgments



This book is the product of many people. The general ideas come from a class I 
teach at UW-Madison for graduate students, and they have all had a huge impact 
on how I think about and try to explain statistics. The more proximate origin 
of the book is a workshop I gave in 2018 at the Xishuangbanna Tropical 
Botanical Garden, Chinese Academy of Sciences, which followed the same outline. 
Participants in this workshop provided great help in honing the content and 
messages. I am indebted to Professors Chen Jin and Wang Bo for hosting my visit.



I also thank Li Daijiang for all of his work developing, cleaning, and speeding 
the `communityPGLMM()` code that is the main tool used for Chapter 4. I wish I 
had his skills. Michael Hardy also kindly allowed me to model the example used 
in Chapters 1 and 2 on his real dataset. Li Daijiang, Joe Phillips, Tanjona 
Ramiadantsoa, and Xu Fangfang provided thoughtful comments on parts or all of 
the manuscript, although I'm responsible for all the lingering errors.



Finally, this work has been supported by the National Science Foundation 
through various grants, and I am very grateful for this support.





______________

Anthony R. Ives

UW-Madison

Integrative Biology

608-262-1519



        [[alternative HTML version deleted]]

_______________________________________________
R-sig-phylo mailing list - R-sig-phylo@r-project.org
https://stat.ethz.ch/mailman/listinfo/r-sig-phylo
Searchable archive at http://www.mail-archive.com/r-sig-phylo@r-project.org/

Reply via email to