Author: bugman
Date: Fri Oct 13 07:59:18 2006
New Revision: 2641

URL: http://svn.gna.org/viewcvs/relax?rev=2641&view=rev
Log:
Fix for the documentation bug #7402 (https://gna.org/bugs/?7402).

This fixes the sigma(NOE) equations in section 8.8.1 of the relax user manual.  
Alex Hansen reported
that the equations incorrect as one of the spectral density terms were 
multiplied by a factor of 6
when there should be nothing.  This problem does not affect the code, the 
equations there are
correct.


Modified:
    1.2/docs/latex/maths.tex

Modified: 1.2/docs/latex/maths.tex
URL: 
http://svn.gna.org/viewcvs/relax/1.2/docs/latex/maths.tex?rev=2641&r1=2640&r2=2641&view=diff
==============================================================================
--- 1.2/docs/latex/maths.tex (original)
+++ 1.2/docs/latex/maths.tex Fri Oct 13 07:59:18 2006
@@ -502,21 +502,21 @@
 
 For the dipolar component of the $\crossrate$ equation~\eqref{eq: sigma_NOE} 
on page~\pageref{eq: sigma_NOE} the spectral density terms are
 \begin{equation}
-    J_d^{\crossrate} = 6J(\omega_H + \omega_X) - 6J(\omega_H - \omega_X).  
\label{eq: J terms: JsigmaNOEd}
+    J_d^{\crossrate} = 6J(\omega_H + \omega_X) - J(\omega_H - \omega_X).  
\label{eq: J terms: JsigmaNOEd}
 \end{equation}
 
 \noindent The partial derivative of these terms with respect to the spectral 
density function parameter $\theta_j$ is
 \begin{equation}
     {J_d^{\crossrate}}' \equiv \frac{\partial J_d^{\crossrate}}{\partial 
\theta_j}
         = 6 \frac{\partial J(\omega_H + \omega_X)}{\partial \theta_j}
-        - 6 \frac{\partial J(\omega_H - \omega_X)}{\partial \theta_j}.  
\label{eq: J terms: JsigmaNOEd'}
+          - \frac{\partial J(\omega_H - \omega_X)}{\partial \theta_j}.  
\label{eq: J terms: JsigmaNOEd'}
 \end{equation}
 
 \noindent The second partial derivative with respect to the spectral density 
function parameters $\theta_j$ and $\theta_k$ is
 \begin{equation}
     {J_d^{\crossrate}}'' \equiv \frac{\partial^2 J_d^{\crossrate}}{\partial 
\theta_j \cdot \partial \theta_k}
         = 6 \frac{\partial^2 J(\omega_H + \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}
-        - 6 \frac{\partial^2 J(\omega_H - \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}.  \label{eq: J terms: JsigmaNOEd"}
+          - \frac{\partial^2 J(\omega_H - \omega_X)}{\partial \theta_j \cdot 
\partial \theta_k}.  \label{eq: J terms: JsigmaNOEd"}
 \end{equation}
 
 


_______________________________________________
relax (http://nmr-relax.com)

This is the relax-commits mailing list
relax-commits@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-commits

Reply via email to