Author: bugman Date: Wed Nov 19 17:33:51 2014 New Revision: 26627 URL: http://svn.gna.org/viewcvs/relax?rev=26627&view=rev Log: Editing of the description for the 'irreducible 5D' alignment tensor basis set.
This is for the align_tensor.matrix_angles and align_tensor.svd user functions. All Sm element have been converted to Am. Modified: trunk/pipe_control/align_tensor.py trunk/user_functions/align_tensor.py Modified: trunk/pipe_control/align_tensor.py URL: http://svn.gna.org/viewcvs/relax/trunk/pipe_control/align_tensor.py?rev=26627&r1=26626&r2=26627&view=diff ============================================================================== --- trunk/pipe_control/align_tensor.py (original) +++ trunk/pipe_control/align_tensor.py Wed Nov 19 17:33:51 2014 @@ -889,7 +889,7 @@ The basis set defines how the angles are calculated: - "matrix", the standard inter-matrix angle. The angle is calculated via the Euclidean inner product of the alignment matrices in rank-2, 3D form divided by the Frobenius norm ||A||_F of the matrices. - - "irreducible 5D", the irreducible 5D basis set {S-2, S-1, S0, S1, S2}. + - "irreducible 5D", the irreducible 5D basis set {A-2, A-1, A0, A1, A2}. - "unitary 5D", the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}. - "geometric 5D", the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}. This is also the Pales standard notation. @@ -994,10 +994,10 @@ # Header printout. if basis_set == 'matrix': sys.stdout.write("Standard inter-tensor matrix angles in degress using the Euclidean inner product divided by the Frobenius norms (theta = arccos(<A1,A2>/(||A1||.||A2||)))") + elif basis_set == 'irreducible 5D': + sys.stdout.write("Inter-tensor vector angles in degrees for the irreducible 5D vectors {A-2, A-1, A0, A1, A2}") elif basis_set == 'unitary 9D': sys.stdout.write("Inter-tensor vector angles in degrees for the unitary 9D vectors {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}") - elif basis_set == 'irreducible 5D': - sys.stdout.write("Inter-tensor vector angles in degrees for the irreducible 5D vectors {S-2, S-1, S0, S1, S2}") elif basis_set == 'unitary 5D': sys.stdout.write("Inter-tensor vector angles in degrees for the unitary 5D vectors {Sxx, Syy, Sxy, Sxz, Syz}") elif basis_set == 'geometric 5D': @@ -1679,13 +1679,13 @@ If the selected basis set is the default of 'irreducible 5D', the matrix on which SVD will be performed will be:: - | S-2(1) S-1(1) S0(1) S1(1) S2(1) | - | S-2(2) S-1(2) S0(2) S1(2) S2(2) | - | S-2(3) S-1(3) S0(3) S1(3) S2(3) | + | A-2(1) A-1(1) A0(1) A1(1) A2(1) | + | A-2(2) A-1(2) A0(2) A1(2) A2(2) | + | A-2(3) A-1(3) A0(3) A1(3) A2(3) | | . . . . . | | . . . . . | | . . . . . | - | S-2(N) S-1(N) S0(N) S1(N) S2(N) | + | A-2(N) A-1(N) A0(N) A1(N) A2(N) | If the selected basis set is 'unitary 9D', the matrix on which SVD will be performed will be:: @@ -1717,18 +1717,18 @@ | . . . . . | | SzzN SxxyyN SxyN SxzN SyzN | - For the irreducible basis set, the Sm components are defined as:: + For the irreducible basis set, the Am components are defined as:: / 4pi \ 1/2 - S0 = | --- | Szz , + A0 = | --- | Szz , \ 5 / / 8pi \ 1/2 - S+/-1 = +/- | --- | (Sxz +/- iSyz) , + A+/-1 = +/- | --- | (Sxz +/- iSyz) , \ 15 / / 2pi \ 1/2 - S+/-2 = | --- | (Sxx - Syy +/- 2iSxy) . + A+/-2 = | --- | (Sxx - Syy +/- 2iSxy) . \ 15 / The relationships between the geometric and unitary basis sets are:: Modified: trunk/user_functions/align_tensor.py URL: http://svn.gna.org/viewcvs/relax/trunk/user_functions/align_tensor.py?rev=26627&r1=26626&r2=26627&view=diff ============================================================================== --- trunk/user_functions/align_tensor.py (original) +++ trunk/user_functions/align_tensor.py Wed Nov 19 17:33:51 2014 @@ -307,7 +307,7 @@ desc_short = "basis set", desc = "The basis set to operate with.", wiz_element_type = "combo", - wiz_combo_choices = ["Standard matrix angles via the Euclidean inner product", "Irreducible 5D {S-2, S-1, S0, S1, S2}", "Unitary 9D {Sxx, Sxy, Sxz, ..., Szz}", "Unitary 5D {Sxx, Syy, Sxy, Sxz, Syz}", "Geometric 5D {Szz, Sxxyy, Sxy, Sxz, Syz}"], + wiz_combo_choices = ["Standard matrix angles via the Euclidean inner product", "Irreducible 5D {A-2, A-1, A0, A1, A2}", "Unitary 9D {Sxx, Sxy, Sxz, ..., Szz}", "Unitary 5D {Sxx, Syy, Sxy, Sxz, Syz}", "Geometric 5D {Szz, Sxxyy, Sxy, Sxz, Syz}"], wiz_combo_data = ["matrix", "irreducible 5D", "unitary 9D", "unitary 5D", "geometric 5D"] ) uf.add_keyarg( @@ -324,7 +324,7 @@ uf.desc.append(Desc_container()) uf.desc[-1].add_paragraph("This will calculate the inter-matrix angles between all loaded alignment tensors for the current data pipe. For the 5D basis sets, the matrices are first converted to a 5D vector form and then then the inter-vector angles, rather than inter-matrix angles, are calculated. The angles are dependent upon the basis set:") uf.desc[-1].add_item_list_element("'matrix'", "The standard inter-tensor matrix angle. This is the default option. The angle is calculated via the Euclidean inner product of the alignment matrices in rank-2, 3D form divided by the Frobenius norm ||A||_F of the matrices.") -uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector angle for the irreducible 5D basis set {S-2, S-1, S0, S1, S2}.") +uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector angle for the irreducible 5D basis set {A-2, A-1, A0, A1, A2}.") uf.desc[-1].add_item_list_element("'unitary 9D'", "The inter-tensor vector angle for the unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}.") uf.desc[-1].add_item_list_element("'unitary 5D'", "The inter-tensor vector angle for the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}.") uf.desc[-1].add_item_list_element("'geometric 5D'", "The inter-tensor vector angle for the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}. This is also the Pales standard notation.") @@ -334,18 +334,18 @@ theta = arccos | ------------- | , \ ||A1|| ||A2|| / \ """) -uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and ||a|| is the Frobenius norm of the matrix. For the irreducible basis set, the Sm components are defined as") +uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and ||a|| is the Frobenius norm of the matrix. For the irreducible basis set, the Am components are defined as") uf.desc[-1].add_verbatim("""\ / 4pi \ 1/2 - S0 = | --- | Szz , + A0 = | --- | Szz , \ 5 / / 8pi \ 1/2 - S+/-1 = +/- | --- | (Sxz +/- iSyz) , + A+/-1 = +/- | --- | (Sxz +/- iSyz) , \ 15 / / 2pi \ 1/2 - S+/-2 = | --- | (Sxx - Syy +/- 2iSxy) , + A+/-2 = | --- | (Sxx - Syy +/- 2iSxy) , \ 15 / \ """) uf.desc[-1].add_paragraph("and, for this complex notation, the angle is") @@ -356,11 +356,11 @@ uf.desc[-1].add_verbatim("""\ ___ \ 1 2* - <A1|A2> = > Sm . Sm , + <A1|A2> = > Am . Am , /__ m=-2,2 \ """) -uf.desc[-1].add_paragraph("and where Sm* = (-1)^m S-m, and the norm is defined as |A1| = Re(sqrt(<A1|A1>)).") +uf.desc[-1].add_paragraph("and where Am* = (-1)^m A-m, and the norm is defined as |A1| = Re(sqrt(<A1|A1>)).") uf.desc[-1].add_paragraph("The inner product solution is a linear map and thereby preserves angles, whereas the {Sxx, Syy, Sxy, Sxz, Syz} and {Szz, Sxxyy, Sxy, Sxz, Syz} basis sets are non-linear maps which do not preserve angles. Therefore the angles from all three basis sets will be different.") uf.backend = align_tensor.matrix_angles uf.menu_text = "&matrix_angles" @@ -508,18 +508,18 @@ | . . . . . | | SzzN SxxyyN SxyN SxzN SyzN |\ """) -uf.desc[-1].add_paragraph("For the irreducible basis set, the Sm components are defined as") +uf.desc[-1].add_paragraph("For the irreducible basis set, the Am components are defined as") uf.desc[-1].add_verbatim("""\ / 4pi \ 1/2 - S0 = | --- | Szz , + A0 = | --- | Szz , \ 5 / / 8pi \ 1/2 - S+/-1 = +/- | --- | (Sxz +/- iSyz) , + A+/-1 = +/- | --- | (Sxz +/- iSyz) , \ 15 / / 2pi \ 1/2 - S+/-2 = | --- | (Sxx - Syy +/- 2iSxy) . + A+/-2 = | --- | (Sxx - Syy +/- 2iSxy) . \ 15 / \ """) uf.desc[-1].add_paragraph("The relationships between the geometric and unitary basis sets are") _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-commits mailing list relax-commits@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-commits