Author: bugman
Date: Wed Nov 19 17:33:51 2014
New Revision: 26627

URL: http://svn.gna.org/viewcvs/relax?rev=26627&view=rev
Log:
Editing of the description for the 'irreducible 5D' alignment tensor basis set.

This is for the align_tensor.matrix_angles and align_tensor.svd user functions. 
 All Sm element have
been converted to Am.


Modified:
    trunk/pipe_control/align_tensor.py
    trunk/user_functions/align_tensor.py

Modified: trunk/pipe_control/align_tensor.py
URL: 
http://svn.gna.org/viewcvs/relax/trunk/pipe_control/align_tensor.py?rev=26627&r1=26626&r2=26627&view=diff
==============================================================================
--- trunk/pipe_control/align_tensor.py  (original)
+++ trunk/pipe_control/align_tensor.py  Wed Nov 19 17:33:51 2014
@@ -889,7 +889,7 @@
     The basis set defines how the angles are calculated:
 
         - "matrix", the standard inter-matrix angle.  The angle is calculated 
via the Euclidean inner product of the alignment matrices in rank-2, 3D form 
divided by the Frobenius norm ||A||_F of the matrices.
-        - "irreducible 5D", the irreducible 5D basis set {S-2, S-1, S0, S1, 
S2}.
+        - "irreducible 5D", the irreducible 5D basis set {A-2, A-1, A0, A1, 
A2}.
         - "unitary 5D", the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}.
         - "geometric 5D", the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, 
Syz}.  This is also the Pales standard notation.
 
@@ -994,10 +994,10 @@
     # Header printout.
     if basis_set == 'matrix':
         sys.stdout.write("Standard inter-tensor matrix angles in degress using 
the Euclidean inner product divided by the Frobenius norms (theta = 
arccos(<A1,A2>/(||A1||.||A2||)))")
+    elif basis_set == 'irreducible 5D':
+        sys.stdout.write("Inter-tensor vector angles in degrees for the 
irreducible 5D vectors {A-2, A-1, A0, A1, A2}")
     elif basis_set == 'unitary 9D':
         sys.stdout.write("Inter-tensor vector angles in degrees for the 
unitary 9D vectors {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}")
-    elif basis_set == 'irreducible 5D':
-        sys.stdout.write("Inter-tensor vector angles in degrees for the 
irreducible 5D vectors {S-2, S-1, S0, S1, S2}")
     elif basis_set == 'unitary 5D':
         sys.stdout.write("Inter-tensor vector angles in degrees for the 
unitary 5D vectors {Sxx, Syy, Sxy, Sxz, Syz}")
     elif basis_set == 'geometric 5D':
@@ -1679,13 +1679,13 @@
 
     If the selected basis set is the default of 'irreducible 5D', the matrix 
on which SVD will be performed will be::
 
-        | S-2(1) S-1(1) S0(1)  S1(1)  S2(1) |
-        | S-2(2) S-1(2) S0(2)  S1(2)  S2(2) |
-        | S-2(3) S-1(3) S0(3)  S1(3)  S2(3) |
+        | A-2(1) A-1(1) A0(1)  A1(1)  A2(1) |
+        | A-2(2) A-1(2) A0(2)  A1(2)  A2(2) |
+        | A-2(3) A-1(3) A0(3)  A1(3)  A2(3) |
         |   .      .     .      .      .    |
         |   .      .     .      .      .    |
         |   .      .     .      .      .    |
-        | S-2(N) S-1(N) S0(N)  S1(N)  S2(N) |
+        | A-2(N) A-1(N) A0(N)  A1(N)  A2(N) |
 
     If the selected basis set is 'unitary 9D', the matrix on which SVD will be 
performed will be::
 
@@ -1717,18 +1717,18 @@
         |  .     .     .    .    .   |
         | SzzN SxxyyN SxyN SxzN SyzN |
 
-    For the irreducible basis set, the Sm components are defined as::
+    For the irreducible basis set, the Am components are defined as::
 
                 / 4pi \ 1/2
-           S0 = | --- |     Szz ,
+           A0 = | --- |     Szz ,
                 \  5  /
 
                     / 8pi \ 1/2
-        S+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
+        A+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
                     \ 15  /
 
                 / 2pi \ 1/2
-        S+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) .
+        A+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) .
                 \ 15  /
 
     The relationships between the geometric and unitary basis sets are::

Modified: trunk/user_functions/align_tensor.py
URL: 
http://svn.gna.org/viewcvs/relax/trunk/user_functions/align_tensor.py?rev=26627&r1=26626&r2=26627&view=diff
==============================================================================
--- trunk/user_functions/align_tensor.py        (original)
+++ trunk/user_functions/align_tensor.py        Wed Nov 19 17:33:51 2014
@@ -307,7 +307,7 @@
     desc_short = "basis set",
     desc = "The basis set to operate with.",
     wiz_element_type = "combo",
-    wiz_combo_choices = ["Standard matrix angles via the Euclidean inner 
product", "Irreducible 5D {S-2, S-1, S0, S1, S2}", "Unitary 9D {Sxx, Sxy, Sxz, 
..., Szz}", "Unitary 5D {Sxx, Syy, Sxy, Sxz, Syz}", "Geometric 5D {Szz, Sxxyy, 
Sxy, Sxz, Syz}"],
+    wiz_combo_choices = ["Standard matrix angles via the Euclidean inner 
product", "Irreducible 5D {A-2, A-1, A0, A1, A2}", "Unitary 9D {Sxx, Sxy, Sxz, 
..., Szz}", "Unitary 5D {Sxx, Syy, Sxy, Sxz, Syz}", "Geometric 5D {Szz, Sxxyy, 
Sxy, Sxz, Syz}"],
     wiz_combo_data = ["matrix", "irreducible 5D", "unitary 9D", "unitary 5D", 
"geometric 5D"]
 )
 uf.add_keyarg(
@@ -324,7 +324,7 @@
 uf.desc.append(Desc_container())
 uf.desc[-1].add_paragraph("This will calculate the inter-matrix angles between 
all loaded alignment tensors for the current data pipe.  For the 5D basis sets, 
the matrices are first converted to a 5D vector form and then then the 
inter-vector angles, rather than inter-matrix angles, are calculated.  The 
angles are dependent upon the basis set:")
 uf.desc[-1].add_item_list_element("'matrix'", "The standard inter-tensor 
matrix angle.  This is the default option.  The angle is calculated via the 
Euclidean inner product of the alignment matrices in rank-2, 3D form divided by 
the Frobenius norm ||A||_F of the matrices.")
-uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector 
angle for the irreducible 5D basis set {S-2, S-1, S0, S1, S2}.")
+uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector 
angle for the irreducible 5D basis set {A-2, A-1, A0, A1, A2}.")
 uf.desc[-1].add_item_list_element("'unitary 9D'", "The inter-tensor vector 
angle for the unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, 
Szz}.")
 uf.desc[-1].add_item_list_element("'unitary 5D'", "The inter-tensor vector 
angle for the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}.")
 uf.desc[-1].add_item_list_element("'geometric 5D'", "The inter-tensor vector 
angle for the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}.  This is also 
the Pales standard notation.")
@@ -334,18 +334,18 @@
     theta = arccos | ------------- | ,
                    \ ||A1|| ||A2|| / \
 """)
-uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and 
||a|| is the Frobenius norm of the matrix.  For the irreducible basis set, the 
Sm components are defined as")
+uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and 
||a|| is the Frobenius norm of the matrix.  For the irreducible basis set, the 
Am components are defined as")
 uf.desc[-1].add_verbatim("""\
             / 4pi \ 1/2 
-       S0 = | --- |     Szz ,
+       A0 = | --- |     Szz ,
             \  5  /
 
                 / 8pi \ 1/2 
-    S+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
+    A+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
                 \ 15  /
 
             / 2pi \ 1/2 
-    S+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) ,
+    A+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) ,
             \ 15  / \
 """)
 uf.desc[-1].add_paragraph("and, for this complex notation, the angle is")
@@ -356,11 +356,11 @@
 uf.desc[-1].add_verbatim("""\
                ___
                \      1    2*
-    <A1|A2> =   >   Sm . Sm   ,
+    <A1|A2> =   >   Am . Am   ,
                /__
               m=-2,2 \
 """)
-uf.desc[-1].add_paragraph("and where Sm* = (-1)^m S-m, and the norm is defined 
as |A1| = Re(sqrt(<A1|A1>)).")
+uf.desc[-1].add_paragraph("and where Am* = (-1)^m A-m, and the norm is defined 
as |A1| = Re(sqrt(<A1|A1>)).")
 uf.desc[-1].add_paragraph("The inner product solution is a linear map and 
thereby preserves angles, whereas the {Sxx, Syy, Sxy, Sxz, Syz} and {Szz, 
Sxxyy, Sxy, Sxz, Syz} basis sets are non-linear maps which do not preserve 
angles.  Therefore the angles from all three basis sets will be different.")
 uf.backend = align_tensor.matrix_angles
 uf.menu_text = "&matrix_angles"
@@ -508,18 +508,18 @@
     |  .     .     .    .    .   |
     | SzzN SxxyyN SxyN SxzN SyzN |\
 """)
-uf.desc[-1].add_paragraph("For the irreducible basis set, the Sm components 
are defined as")
+uf.desc[-1].add_paragraph("For the irreducible basis set, the Am components 
are defined as")
 uf.desc[-1].add_verbatim("""\
             / 4pi \ 1/2
-       S0 = | --- |     Szz ,
+       A0 = | --- |     Szz ,
             \  5  /
 
                 / 8pi \ 1/2
-    S+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
+    A+/-1 = +/- | --- |     (Sxz +/- iSyz) ,
                 \ 15  /
 
             / 2pi \ 1/2
-    S+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) .
+    A+/-2 = | --- |     (Sxx - Syy +/- 2iSxy) .
             \ 15  / \
 """)
 uf.desc[-1].add_paragraph("The relationships between the geometric and unitary 
basis sets are")


_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-commits mailing list
relax-commits@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-commits

Reply via email to