Author: bugman
Date: Thu Nov 20 09:15:37 2014
New Revision: 26643

URL: http://svn.gna.org/viewcvs/relax?rev=26643&view=rev
Log:
Expanded the 'irreducible 5D' text in the align_tensor.matrix_angles and 
align_tensor.svd user functions.

This now explains that these are the coefficients for the spherical harmonic 
decomposition.


Modified:
    trunk/user_functions/align_tensor.py

Modified: trunk/user_functions/align_tensor.py
URL: 
http://svn.gna.org/viewcvs/relax/trunk/user_functions/align_tensor.py?rev=26643&r1=26642&r2=26643&view=diff
==============================================================================
--- trunk/user_functions/align_tensor.py        (original)
+++ trunk/user_functions/align_tensor.py        Thu Nov 20 09:15:37 2014
@@ -343,7 +343,7 @@
 uf.desc.append(Desc_container())
 uf.desc[-1].add_paragraph("This will calculate the inter-matrix angles between 
all loaded alignment tensors for the current data pipe.  For the vector basis 
sets, the matrices are first converted to vector form and then then the 
inter-vector angles rather than inter-matrix angles are calculated.  The angles 
are dependent upon the basis set - linear maps produce identical results 
whereas non-linear maps result in different angles.  The basis set can be one 
of:")
 uf.desc[-1].add_item_list_element("'matrix'", "The standard inter-matrix 
angles.  This default option is a linear map, hence angles are preserved.  The 
angle is calculated via the arccos of the Euclidean inner product of the 
alignment matrices in rank-2, 3D form divided by the Frobenius norm ||A||_F of 
the matrices.")
-uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector 
angles for the irreducible 5D basis set {A-2, A-1, A0, A1, A2}.  This is a 
linear map, hence angles are preserved.")
+uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector 
angles for the irreducible spherical tensor 5D basis set {A-2, A-1, A0, A1, 
A2}.  This is a linear map, hence angles are preserved.  These are the 
spherical harmonic decomposition coefficients.")
 uf.desc[-1].add_item_list_element("'unitary 9D'", "The inter-tensor vector 
angles for the unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, 
Szz}.  This is a linear map, hence angles are preserved.")
 uf.desc[-1].add_item_list_element("'unitary 5D'", "The inter-tensor vector 
angles for the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}.  This is a 
non-linear map, hence angles are not preserved.")
 uf.desc[-1].add_item_list_element("'geometric 5D'", "The inter-tensor vector 
angles for the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}.  This is a 
non-linear map, hence angles are not preserved.  This is also the Pales 
standard notation.")
@@ -353,7 +353,7 @@
     theta = arccos | ------------- | ,
                    \ ||A1|| ||A2|| / \
 """)
-uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and 
||a|| is the Frobenius norm of the matrix.  For the irreducible 5D basis set, 
the Am components are defined as")
+uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and 
||a|| is the Frobenius norm of the matrix.  For the irreducible spherical 
tensor 5D basis set, the Am components are defined as")
 uf.desc[-1].add_verbatim("""\
             / 4pi \ 1/2
        A0 = | --- |     Szz ,
@@ -491,7 +491,7 @@
 # Description.
 uf.desc.append(Desc_container())
 uf.desc[-1].add_paragraph("This will perform a singular value decomposition 
for all alignment tensors and calculate the condition number.  The singular 
values and condition number are dependent on the basis set - linear maps 
produce identical results whereas non-linear maps result in different values.  
The basis set can be one of:")
-uf.desc[-1].add_item_list_element("'irreducible 5D'", "The irreducible 5D 
basis set {A-2, A-1, A0, A1, A2}.  This is a linear map, hence angles, singular 
values, and condition number are preserved.")
+uf.desc[-1].add_item_list_element("'irreducible 5D'", "The irreducible 
spherical tensor 5D basis set {A-2, A-1, A0, A1, A2}.  This is a linear map, 
hence angles, singular values, and condition number are preserved.  These are 
the spherical harmonic decomposition coefficients.")
 uf.desc[-1].add_item_list_element("'unitary 9D'", "The unitary 9D basis set 
{Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}.  This is a linear map, hence 
angles, singular values, and condition number are preserved.")
 uf.desc[-1].add_item_list_element("'unitary 5D'", "The unitary 5D basis set 
{Sxx, Syy, Sxy, Sxz, Syz}.  This is a non-linear map, hence angles, singular 
values, and condition number are not preserved.")
 uf.desc[-1].add_item_list_element("'geometric 5D'", "The geometric 5D basis 
set {Szz, Sxxyy, Sxy, Sxz, Syz}.  This is a non-linear map, hence angles, 
singular values, and condition number are not preserved.  This is also the 
Pales standard notation.")
@@ -535,7 +535,7 @@
     |  .     .     .    .    .   |
     | SzzN SxxyyN SxyN SxzN SyzN |\
 """)
-uf.desc[-1].add_paragraph("For the irreducible basis set, the Am components 
are defined as")
+uf.desc[-1].add_paragraph("For the irreducible spherical tensor basis set, the 
Am components are defined as")
 uf.desc[-1].add_verbatim("""\
             / 4pi \ 1/2
        A0 = | --- |     Szz ,


_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-commits mailing list
relax-commits@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-commits

Reply via email to