Author: bugman Date: Thu Nov 20 09:15:37 2014 New Revision: 26643 URL: http://svn.gna.org/viewcvs/relax?rev=26643&view=rev Log: Expanded the 'irreducible 5D' text in the align_tensor.matrix_angles and align_tensor.svd user functions.
This now explains that these are the coefficients for the spherical harmonic decomposition. Modified: trunk/user_functions/align_tensor.py Modified: trunk/user_functions/align_tensor.py URL: http://svn.gna.org/viewcvs/relax/trunk/user_functions/align_tensor.py?rev=26643&r1=26642&r2=26643&view=diff ============================================================================== --- trunk/user_functions/align_tensor.py (original) +++ trunk/user_functions/align_tensor.py Thu Nov 20 09:15:37 2014 @@ -343,7 +343,7 @@ uf.desc.append(Desc_container()) uf.desc[-1].add_paragraph("This will calculate the inter-matrix angles between all loaded alignment tensors for the current data pipe. For the vector basis sets, the matrices are first converted to vector form and then then the inter-vector angles rather than inter-matrix angles are calculated. The angles are dependent upon the basis set - linear maps produce identical results whereas non-linear maps result in different angles. The basis set can be one of:") uf.desc[-1].add_item_list_element("'matrix'", "The standard inter-matrix angles. This default option is a linear map, hence angles are preserved. The angle is calculated via the arccos of the Euclidean inner product of the alignment matrices in rank-2, 3D form divided by the Frobenius norm ||A||_F of the matrices.") -uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector angles for the irreducible 5D basis set {A-2, A-1, A0, A1, A2}. This is a linear map, hence angles are preserved.") +uf.desc[-1].add_item_list_element("'irreducible 5D'", "The inter-tensor vector angles for the irreducible spherical tensor 5D basis set {A-2, A-1, A0, A1, A2}. This is a linear map, hence angles are preserved. These are the spherical harmonic decomposition coefficients.") uf.desc[-1].add_item_list_element("'unitary 9D'", "The inter-tensor vector angles for the unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}. This is a linear map, hence angles are preserved.") uf.desc[-1].add_item_list_element("'unitary 5D'", "The inter-tensor vector angles for the unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}. This is a non-linear map, hence angles are not preserved.") uf.desc[-1].add_item_list_element("'geometric 5D'", "The inter-tensor vector angles for the geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}. This is a non-linear map, hence angles are not preserved. This is also the Pales standard notation.") @@ -353,7 +353,7 @@ theta = arccos | ------------- | , \ ||A1|| ||A2|| / \ """) -uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and ||a|| is the Frobenius norm of the matrix. For the irreducible 5D basis set, the Am components are defined as") +uf.desc[-1].add_paragraph("where <a,b> is the Euclidean inner product and ||a|| is the Frobenius norm of the matrix. For the irreducible spherical tensor 5D basis set, the Am components are defined as") uf.desc[-1].add_verbatim("""\ / 4pi \ 1/2 A0 = | --- | Szz , @@ -491,7 +491,7 @@ # Description. uf.desc.append(Desc_container()) uf.desc[-1].add_paragraph("This will perform a singular value decomposition for all alignment tensors and calculate the condition number. The singular values and condition number are dependent on the basis set - linear maps produce identical results whereas non-linear maps result in different values. The basis set can be one of:") -uf.desc[-1].add_item_list_element("'irreducible 5D'", "The irreducible 5D basis set {A-2, A-1, A0, A1, A2}. This is a linear map, hence angles, singular values, and condition number are preserved.") +uf.desc[-1].add_item_list_element("'irreducible 5D'", "The irreducible spherical tensor 5D basis set {A-2, A-1, A0, A1, A2}. This is a linear map, hence angles, singular values, and condition number are preserved. These are the spherical harmonic decomposition coefficients.") uf.desc[-1].add_item_list_element("'unitary 9D'", "The unitary 9D basis set {Sxx, Sxy, Sxz, Syx, Syy, Syz, Szx, Szy, Szz}. This is a linear map, hence angles, singular values, and condition number are preserved.") uf.desc[-1].add_item_list_element("'unitary 5D'", "The unitary 5D basis set {Sxx, Syy, Sxy, Sxz, Syz}. This is a non-linear map, hence angles, singular values, and condition number are not preserved.") uf.desc[-1].add_item_list_element("'geometric 5D'", "The geometric 5D basis set {Szz, Sxxyy, Sxy, Sxz, Syz}. This is a non-linear map, hence angles, singular values, and condition number are not preserved. This is also the Pales standard notation.") @@ -535,7 +535,7 @@ | . . . . . | | SzzN SxxyyN SxyN SxzN SyzN |\ """) -uf.desc[-1].add_paragraph("For the irreducible basis set, the Am components are defined as") +uf.desc[-1].add_paragraph("For the irreducible spherical tensor basis set, the Am components are defined as") uf.desc[-1].add_verbatim("""\ / 4pi \ 1/2 A0 = | --- | Szz , _______________________________________________ relax (http://www.nmr-relax.com) This is the relax-commits mailing list relax-commits@gna.org To unsubscribe from this list, get a password reminder, or change your subscription options, visit the list information page at https://mail.gna.org/listinfo/relax-commits