That's a more elegant solution, removing all complex() function calls.

Cheers,

Edward



On 6 May 2014 17:25,  <[email protected]> wrote:
> Author: tlinnet
> Date: Tue May  6 17:25:05 2014
> New Revision: 23012
>
> URL: http://svn.gna.org/viewcvs/relax?rev=23012&view=rev
> Log:
> Speed-up. Converted expressions of complex(x, y) to (x + y*1j).
>
> sr #3154: (https://gna.org/support/?3154) Implementation of Baldwin (2014) 
> B14 model - 2-site exact solution model for all time scales.
>
> This follows the tutorial for adding relaxation dispersion models at:
> http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging
>
>
> Modified:
>     trunk/lib/dispersion/b14.py
>
> Modified: trunk/lib/dispersion/b14.py
> URL: 
> http://svn.gna.org/viewcvs/relax/trunk/lib/dispersion/b14.py?rev=23012&r1=23011&r2=23012&view=diff
> ==============================================================================
> --- trunk/lib/dispersion/b14.py (original)
> +++ trunk/lib/dispersion/b14.py Tue May  6 17:25:05 2014
> @@ -163,7 +163,7 @@
>
>      # Time independent factors.
>      # N = oG + oE.
> -    N = complex(g3, g4)
> +    N = g3 + g4*1j
>
>      NNc = g32 + g42
>
> @@ -176,13 +176,13 @@
>      # t1 = (-dw + g4) * (complex(-dw, -g3)) / NNc #t1.
>
>      # t2.
> -    t2 = (dw + g4) * complex(dw, -g3) / NNc
> +    t2 = (dw + g4) * (dw - g3*1j) / NNc
>
>      # t1 + t2.
> -    t1pt2 = complex(2. * dw2, zeta) / NNc
> +    t1pt2 = (2. * dw2 + zeta*1j) / NNc
>
>      # -2 * oG * t2.
> -    oGt2 = complex(-alpha_m - g3, dw - g4) * t2
> +    oGt2 = t2 * (-alpha_m - g3 ) + t2 * (dw - g4)*1j
>
>      # -1/Trel * log(LpreDyn).
>      Rpre = (r20a + r20b + kex) / 2.0
> @@ -195,13 +195,13 @@
>      E2 =  two_tcp * g4
>
>      # Mixed term (complex) (E0 - iE2)/2.
> -    E1 = complex(g3, -g4) * tcp
> +    E1 = (g3 - g4*1j) * tcp
>
>      # Real. The v_1c in paper.
>      ex0b = f0 * cosh(E0) - f2 * cos(E2)
>
>      # Complex.
> -    ex0c = f0 * sinh(E0) - f2 * sin(E2) * complex(0, 1.0)
> +    ex0c = f0 * sinh(E0) - f2 * sin(E2)*1j
>
>      # Complex.
>      ex1c = sinh(E1)
> @@ -212,7 +212,7 @@
>      y = power( (ex0b - v3) / (ex0b + v3), ncyc)
>
>      # Off diagonal common factor. sinh fuctions.
> -    v2pPdN = complex(-deltaR2 + kex, dw) * ex0c + (-oGt2 - k_AB * t1pt2) * 
> 2. * ex1c
> +    v2pPdN = (-deltaR2 + kex + dw*1j) * ex0c + (-oGt2 - k_AB * t1pt2) * 2. * 
> ex1c
>
>      Tog = (1. + y) / 2. + (1. - y) / (2. * v3) * v2pPdN / N
>
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to