I tried:

        ## Experiments
        # Exp 1
        sfrq_1 = 500.0*1E6
        r20_key_1 = generate_r20_key(exp_type=EXP_TYPE_CPMG_SQ, frq=sfrq_1)
        time_T2_1 = 0.05
        ncycs_1 = range(2,22,2)
        # Here you define the direct R2eff errors (rad/s), as being added
or subtracted for the created R2eff point in the corresponding ncyc cpmg
frequence.
        #r2eff_errs_1 = [0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05,
-0.05, 0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05]
        r2eff_errs_1 = [0.0] * len(ncycs_1)
        exp_1 = [sfrq_1, time_T2_1, ncycs_1, r2eff_errs_1]

        sfrq_2 = 600.0*1E6
        r20_key_2 = generate_r20_key(exp_type=EXP_TYPE_CPMG_SQ, frq=sfrq_2)
        time_T2_2 = 0.06
        ncycs_2 = range(2,22,2)
        # Here you define the direct R2eff errors (rad/s), as being added
or subtracted for the created R2eff point in the corresponding ncyc cpmg
frequence.
        #r2eff_errs_2 = [0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05,
-0.05, 0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05]
        r2eff_errs_2 = [0.0] * len(ncycs_2)
        exp_2 = [sfrq_2, time_T2_2, ncycs_2, r2eff_errs_2]

        sfrq_3 = 700.0*1E6
        r20_key_3 = generate_r20_key(exp_type=EXP_TYPE_CPMG_SQ, frq=sfrq_3)
        time_T2_3 = 0.07
        ncycs_3 = range(2,22,2)
        # Here you define the direct R2eff errors (rad/s), as being added
or subtracted for the created R2eff point in the corresponding ncyc cpmg
frequence.
        #r2eff_errs_2 = [0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05,
-0.05, 0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05, -0.05, 0.05]
        r2eff_errs_3 = [0.0] * len(ncycs_3)
        exp_3 = [sfrq_3, time_T2_3, ncycs_3, r2eff_errs_3]

        # Collect all exps
        exps = [exp_1, exp_2, exp_3]

        R20 = [10.1, 10.2, 10.3, 100.1, 100.2, 100.3, 20.1, 20.2, 20.3,
200.1, 200.2, 200.3, 30.1, 30.2, 30.3, 300.1, 300.2, 300.3, 40.1, 40.2,
40.3, 400.1, 400.2, 400.3]
        #R20 = [10.1, 10.2, 10.3, 100.1, 100.2, 100.3, 20.1, 20.2, 20.3,
200.1, 200.2, 200.3]
        dw_arr = [1.0, 2.0, 3.0, 4.0]
        #dw_arr = [1.0, 2.0]
        pA_arr = [0.9]
        kex_arr = [1000.]

        spins = [
                ['Ala', 1, 'N', {'r2a': {r20_key_1: R20[0], r20_key_2:
R20[1], r20_key_3: R20[2]}, 'r2b': {r20_key_1: R20[3], r20_key_2: R20[4],
r20_key_3: R20[5]}, 'kex': kex_arr[0], 'pA': pA_arr[0], 'dw': dw_arr[0]}],
                ['Ala', 2, 'N', {'r2a': {r20_key_1: R20[6], r20_key_2:
R20[7], r20_key_3: R20[8]}, 'r2b': {r20_key_1: R20[9], r20_key_2: R20[10],
r20_key_3: R20[11]}, 'kex': kex_arr[0], 'pA': pA_arr[0], 'dw': dw_arr[1]}],
                ['Ala', 3, 'N', {'r2a': {r20_key_1: R20[12], r20_key_2:
R20[13], r20_key_3: R20[14]}, 'r2b': {r20_key_1: R20[15], r20_key_2:
R20[16], r20_key_3: R20[17]}, 'kex': kex_arr[0], 'pA': pA_arr[0], 'dw':
dw_arr[2]}],
                ['Ala', 4, 'N', {'r2a': {r20_key_1: R20[18], r20_key_2:
R20[19], r20_key_3: R20[20]}, 'r2b': {r20_key_1: R20[21], r20_key_2:
R20[22], r20_key_3: R20[23]}, 'kex': kex_arr[0], 'pA': pA_arr[0], 'dw':
dw_arr[3]}],
                ]

------

------------
relax> grid_search(lower=[10.1, 10.2, 10.3, 100.1, 100.2, 100.3, 20.1,
20.2, 20.3, 200.1, 200.2, 200.3, 30.1, 30.2, 30.3, 300.1, 300.2, 300.3,
40.1, 40.2, 40.3, 400.1, 400.2, 400.3, 1.0, 2.0, 3.0, 4.0, 0.9, 1000.0],
upper=[10.1, 10.2, 10.3, 100.1, 100.2, 100.3, 20.1, 20.2, 20.3, 200.1,
200.2, 200.3, 30.1, 30.2, 30.3, 300.1, 300.2, 300.3, 40.1, 40.2, 40.3,
400.1, 400.2, 400.3, 1.0, 2.0, 3.0, 4.0, 0.9, 1000.0], inc=1,
constraints=True, verbosity=1)


Fitting to the spin block [':1@N', ':2@N', ':3@N', ':4@N']
----------------------------------------------------------

Unconstrained grid search size: 1 (constraints may decrease this size).


Grid search
~~~~~~~~~~~

Searching through 1 grid nodes.

Optimised parameter values:
r2a (SQ CPMG - 500.00000000 MHz)        10.100000000000000
r2a (SQ CPMG - 600.00000000 MHz)        10.199999999999999
r2a (SQ CPMG - 700.00000000 MHz)        10.300000000000001
r2b (SQ CPMG - 500.00000000 MHz)       100.099999999999994
r2b (SQ CPMG - 600.00000000 MHz)       100.199999999999989
r2b (SQ CPMG - 700.00000000 MHz)       100.299999999999997
r2a (SQ CPMG - 500.00000000 MHz)        20.100000000000001
r2a (SQ CPMG - 600.00000000 MHz)        20.199999999999999
r2a (SQ CPMG - 700.00000000 MHz)        20.300000000000004
r2b (SQ CPMG - 500.00000000 MHz)       200.099999999999966
r2b (SQ CPMG - 600.00000000 MHz)       200.199999999999989
r2b (SQ CPMG - 700.00000000 MHz)       200.300000000000011
r2a (SQ CPMG - 500.00000000 MHz)        30.100000000000001
r2a (SQ CPMG - 600.00000000 MHz)        30.199999999999999
r2a (SQ CPMG - 700.00000000 MHz)        30.300000000000004
r2b (SQ CPMG - 500.00000000 MHz)       300.100000000000023
r2b (SQ CPMG - 600.00000000 MHz)       300.199999999999989
r2b (SQ CPMG - 700.00000000 MHz)       300.300000000000011
r2a (SQ CPMG - 500.00000000 MHz)        40.099999999999994
r2a (SQ CPMG - 600.00000000 MHz)        40.200000000000003
r2a (SQ CPMG - 700.00000000 MHz)        40.299999999999997
r2b (SQ CPMG - 500.00000000 MHz)       400.100000000000023
r2b (SQ CPMG - 600.00000000 MHz)       400.199999999999932
r2b (SQ CPMG - 700.00000000 MHz)       400.300000000000011
dw                           1.000000000000000
dw                           2.000000000000000
dw                           3.000000000000000
dw                           4.000000000000000
pA                           0.900000000000000
kex                       1000.000000000000000
('CR72 full', 'Ala', ':1@N', 'r2a', 'SQ CPMG - 600.00000000 MHz', 10.2,
10.2)
('CR72 full', 'Ala', ':1@N', 'r2a', 'SQ CPMG - 500.00000000 MHz', 10.1,
10.1)
('CR72 full', 'Ala', ':1@N', 'r2a', 'SQ CPMG - 700.00000000 MHz', 10.3,
10.3)
('CR72 full', 'Ala', ':1@N', 'r2b', 'SQ CPMG - 600.00000000 MHz',
100.19999999999999, 100.2)
('CR72 full', 'Ala', ':1@N', 'r2b', 'SQ CPMG - 500.00000000 MHz', 100.1,
100.1)
('CR72 full', 'Ala', ':1@N', 'r2b', 'SQ CPMG - 700.00000000 MHz', 100.3,
100.3)
('CR72 full', 'Ala', ':2@N', 'r2a', 'SQ CPMG - 600.00000000 MHz', 20.2,
20.2)
('CR72 full', 'Ala', ':2@N', 'r2a', 'SQ CPMG - 500.00000000 MHz', 20.1,
20.1)
('CR72 full', 'Ala', ':2@N', 'r2a', 'SQ CPMG - 700.00000000 MHz',
20.300000000000004, 20.3)
('CR72 full', 'Ala', ':2@N', 'r2b', 'SQ CPMG - 600.00000000 MHz', 200.2,
200.2)
('CR72 full', 'Ala', ':2@N', 'r2b', 'SQ CPMG - 500.00000000 MHz',
200.09999999999997, 200.1)
('CR72 full', 'Ala', ':2@N', 'r2b', 'SQ CPMG - 700.00000000 MHz', 200.3,
200.3)
('CR72 full', 'Ala', ':3@N', 'r2a', 'SQ CPMG - 600.00000000 MHz', 30.2,
30.2)
('CR72 full', 'Ala', ':3@N', 'r2a', 'SQ CPMG - 500.00000000 MHz', 30.1,
30.1)
('CR72 full', 'Ala', ':3@N', 'r2a', 'SQ CPMG - 700.00000000 MHz',
30.300000000000004, 30.3)
('CR72 full', 'Ala', ':3@N', 'r2b', 'SQ CPMG - 600.00000000 MHz', 300.2,
300.2)
('CR72 full', 'Ala', ':3@N', 'r2b', 'SQ CPMG - 500.00000000 MHz', 300.1,
300.1)
('CR72 full', 'Ala', ':3@N', 'r2b', 'SQ CPMG - 700.00000000 MHz', 300.3,
300.3)
('CR72 full', 'Ala', ':4@N', 'r2a', 'SQ CPMG - 600.00000000 MHz', 40.2,
40.2)
('CR72 full', 'Ala', ':4@N', 'r2a', 'SQ CPMG - 500.00000000 MHz',
40.099999999999994, 40.1)
('CR72 full', 'Ala', ':4@N', 'r2a', 'SQ CPMG - 700.00000000 MHz', 40.3,
40.3)
('CR72 full', 'Ala', ':4@N', 'r2b', 'SQ CPMG - 600.00000000 MHz',
400.19999999999993, 400.2)
('CR72 full', 'Ala', ':4@N', 'r2b', 'SQ CPMG - 500.00000000 MHz', 400.1,
400.1)
('CR72 full', 'Ala', ':4@N', 'r2b', 'SQ CPMG - 700.00000000 MHz', 400.3,
400.3)

--------

It jumps over the target function?

This is a little weird?

Best
Troels



2014-06-06 15:02 GMT+02:00 Edward d'Auvergne <[email protected]>:

> Hi,
>
> Some more information is needed, as it's not possible to tell where
> this stopped.  A good idea would be to turn up the verbosity level to
> see what minfx is doing.  Did you call the grid_search user function?
> Or the minimise user function?  Did the grid search say something like
> "Searching through 1 grid nodes"?
>
> Regards,
>
> Edward
>
>
>
> On 6 June 2014 14:48, Troels Emtekær Linnet <[email protected]> wrote:
> > Hi Edward.
> >
> > When I try to do a grid search, it does not initalize func_CR72_full in
> the
> > target function?
> >
> > If I make
> > import sys
> > sys.exit()
> >
> > It does not stop?
> > Only if I do a minimise, it stops?
> >
> > It is in
> > specific_analyses/relax_disp/optimisation.py
> > line 745
> >
> > Inserting
> >             print model.func.im_func.__name__
> > gives func_CR72_full
> >
> > How does it know how to unpack and calculate?
> >
> > Best
> > Troels
> >
> >
> > 2014-06-06 12:32 GMT+02:00 Edward d'Auvergne <[email protected]>:
> >
> >> Hi,
> >>
> >> That sounds good.  Maybe it's best to have the number of fields and
> >> number of spins set to something different and not to 2?  That way the
> >> unpacking is stressed as much as possible and there cannot be a
> >> accidental swap of the field and spin dimensions being unnoticed by
> >> the test.  This is not likely, but I've encountered enough weird and
> >> supposedly impossible situations in the development of relax that it
> >> would not surprise me.
> >>
> >> Cheers,
> >>
> >> Edward
> >>
> >> On 6 June 2014 12:27, Troels Emtekær Linnet <[email protected]>
> wrote:
> >> > Check.
> >> >
> >> > I am generating R2eff data for 3 fields, and 3 spins, for full model.
> >> > I will put the data in
> >> > test_suite/shared_data/dispersion/bug_22146_unpacking_r2a_r2b_cluster
> >> >
> >> > Best
> >> > Troels
> >> >
> >> >
> >> > 2014-06-06 12:11 GMT+02:00 Edward d'Auvergne <[email protected]>:
> >> >
> >> >> Hi,
> >> >>
> >> >> Right, you have the 2 parameters in the self.num_spins*2 part.  And I
> >> >> forgot about the parameters being different for each field.  It would
> >> >> be good to then have a multi-field and multi-spin cluster system test
> >> >> to really make sure that relax operates correctly, especially with
> the
> >> >> data going into the target function and the subsequently unpacking
> the
> >> >> results into the relax data store.  For example someone might modify
> >> >> the loop_parameters() function - this concept could be migrated into
> >> >> the specific API and converted into a common mechanism for all the
> >> >> analysis types as it is quite powerful - and they may not know that
> >> >> the change they just made broke code in the
> >> >> target_functions.relax_disp module.
> >> >>
> >> >> Cheers,
> >> >>
> >> >> Edward
> >> >>
> >> >>
> >> >> On 6 June 2014 12:05, Troels Emtekær Linnet <[email protected]>
> >> >> wrote:
> >> >> > Hi Ed.
> >> >> >
> >> >> > The implementations needs:
> >> >> >         R20 = params[:self.end_index[1]].reshape(self.num_spins*2,
> >> >> > self.num_frq)
> >> >> >         R20A = R20[::2].flatten()
> >> >> >         R20B = R20[1::2].flatten()
> >> >> >
> >> >> >
> >> >> >
> >> >> >
> >> >> >
> >> >> > 2014-06-06 11:55 GMT+02:00 Edward d'Auvergne <[email protected]
> >:
> >> >> >
> >> >> >> The different unpacking implementations can be tested with the
> >> >> >> timeit
> >> >> >> Python module to see which is fastest
> >> >> >>
> >> >> >>
> >> >> >> (
> http://thread.gmane.org/gmane.science.nmr.relax.devel/5937/focus=6010).
> >> >> >>
> >> >> >> Cheers,
> >> >> >>
> >> >> >> Edward
> >> >> >>
> >> >> >>
> >> >> >>
> >> >> >> On 6 June 2014 11:53, Edward d'Auvergne <[email protected]>
> >> >> >> wrote:
> >> >> >> > Hi,
> >> >> >> >
> >> >> >> > In this case, I think 'num_frq' should be fixed to 2.  This
> >> >> >> > dimension
> >> >> >> > corresponds to the parameters R20A and R20B so it is always
> fixed
> >> >> >> > to
> >> >> >> > 2.
> >> >> >> >
> >> >> >> > Regards,
> >> >> >> >
> >> >> >> > Edward
> >> >> >> >
> >> >> >> >
> >> >> >> >
> >> >> >> > On 6 June 2014 11:51, Troels Emtekær Linnet
> >> >> >> > <[email protected]>
> >> >> >> > wrote:
> >> >> >> >> Hi.
> >> >> >> >>
> >> >> >> >> Another way is:
> >> >> >> >>
> >> >> >> >> ml = params[:end_index[1]].reshape(num_spins*2, num_frq)
> >> >> >> >> R20A = ml[::2].flatten()
> >> >> >> >> R20B = ml[1::2].flatten()
> >> >> >> >>
> >> >> >> >>
> >> >> >> >> Best
> >> >> >> >> Troels
> >> >> >> >>
> >> >> >> >>
> >> >> >> >>
> >> >> >> >> 2014-06-06 11:39 GMT+02:00 Troels Emtekær Linnet
> >> >> >> >> <[email protected]>:
> >> >> >> >>
> >> >> >> >>> There is no doubt that it is the unpacking of the R20A and
> R20B
> >> >> >> >>> in
> >> >> >> >>> the
> >> >> >> >>> target function.
> >> >> >> >>>
> >> >> >> >>> I was thinking of creating a function, which do the the
> >> >> >> >>> unpacking.
> >> >> >> >>>
> >> >> >> >>> This unpacking function could then be tested with a unit test?
> >> >> >> >>>
> >> >> >> >>> What do you think?
> >> >> >> >>> Where should I position such a function?
> >> >> >> >>>
> >> >> >> >>> Best
> >> >> >> >>> Troels
> >> >> >> >>>
> >> >> >> >>>
> >> >> >> >>>
> >> >> >> >>> 2014-06-06 11:26 GMT+02:00 Edward d'Auvergne
> >> >> >> >>> <[email protected]>:
> >> >> >> >>>>
> >> >> >> >>>> Hi Troels,
> >> >> >> >>>>
> >> >> >> >>>>
> >> >> >> >>>> The best way to handle this is to first create a unit test of
> >> >> >> >>>> the
> >> >> >> >>>>
> >> >> >> >>>>
> specific_analyses.relax_disp.parameters.disassemble_param_vector()
> >> >> >> >>>> where the problem is likely to be most easily found.  I don't
> >> >> >> >>>> understand how this could be a problem as the
> >> >> >> >>>> assemble_param_vector()
> >> >> >> >>>> and disassemble_param_vector() functions both call the same
> >> >> >> >>>> loop_parameters() function for the ordering of the parameter
> >> >> >> >>>> values!
> >> >> >> >>>> Maybe the problem is in the unpacking of the parameter vector
> >> >> >> >>>> in
> >> >> >> >>>> the
> >> >> >> >>>> target functions themselves, for example in the full B14
> model:
> >> >> >> >>>>
> >> >> >> >>>>
> >> >> >> >>>>     def func_B14_full(self, params):
> >> >> >> >>>>         """Target function for the Baldwin (2014) 2-site
> exact
> >> >> >> >>>> solution model for all time scales.
> >> >> >> >>>>
> >> >> >> >>>>         This assumes that pA > pB, and hence this must be
> >> >> >> >>>> implemented
> >> >> >> >>>> as a constraint.
> >> >> >> >>>>
> >> >> >> >>>>
> >> >> >> >>>>         @param params:  The vector of parameter values.
> >> >> >> >>>>         @type params:   numpy rank-1 float array
> >> >> >> >>>>         @return:        The chi-squared value.
> >> >> >> >>>>         @rtype:         float
> >> >> >> >>>>         """
> >> >> >> >>>>
> >> >> >> >>>>         # Scaling.
> >> >> >> >>>>         if self.scaling_flag:
> >> >> >> >>>>             params = dot(params, self.scaling_matrix)
> >> >> >> >>>>
> >> >> >> >>>>         # Unpack the parameter values.
> >> >> >> >>>>         R20A = params[:self.end_index[0]]
> >> >> >> >>>>         R20B = params[self.end_index[0]:self.end_index[1]]
> >> >> >> >>>>         dw = params[self.end_index[1]:self.end_index[2]]
> >> >> >> >>>>         pA = params[self.end_index[2]]
> >> >> >> >>>>         kex = params[self.end_index[2]+1]
> >> >> >> >>>>
> >> >> >> >>>>         # Calculate and return the chi-squared value.
> >> >> >> >>>>         return self.calc_B14_chi2(R20A=R20A, R20B=R20B,
> dw=dw,
> >> >> >> >>>> pA=pA,
> >> >> >> >>>> kex=kex)
> >> >> >> >>>>
> >> >> >> >>>>
> >> >> >> >>>> This R20A and R20B unpacking might be the failure point as
> this
> >> >> >> >>>> may
> >> >> >> >>>> not match the loop_parameters() function - which it must!  In
> >> >> >> >>>> any
> >> >> >> >>>> case, having a unit or system test catch the problem would be
> >> >> >> >>>> very
> >> >> >> >>>> useful for the stability of the dispersion analysis in relax.
> >> >> >> >>>>
> >> >> >> >>>> A code example might be useful:
> >> >> >> >>>>
> >> >> >> >>>> R20_params = array([1, 2, 3, 4])
> >> >> >> >>>> R20A, R20B = transpose(R20_params.reshape(2, 2)
> >> >> >> >>>> print(R20A)
> >> >> >> >>>> print(R20B)
> >> >> >> >>>>
> >> >> >> >>>> You should see that R20A is [1, 3], and R20B is [2, 4].  This
> >> >> >> >>>> is
> >> >> >> >>>> how
> >> >> >> >>>> the parameters are handled in the loop_parameters() function
> >> >> >> >>>> which
> >> >> >> >>>> defines the parameter vector in all parts of relax.  There
> >> >> >> >>>> might
> >> >> >> >>>> be a
> >> >> >> >>>> quicker way to unpack the parameters, but such an idea could
> be
> >> >> >> >>>> used
> >> >> >> >>>> for the target functions.
> >> >> >> >>>>
> >> >> >> >>>> Cheers,
> >> >> >> >>>>
> >> >> >> >>>> Edward
> >> >> >> >>>>
> >> >> >> >>>> On 6 June 2014 11:08, Troels E. Linnet
> >> >> >> >>>> <[email protected]>
> >> >> >> >>>> wrote:
> >> >> >> >>>> > URL:
> >> >> >> >>>> >   <http://gna.org/bugs/?22146>
> >> >> >> >>>> >
> >> >> >> >>>> >                  Summary: Unpacking of R2A and R2B is
> >> >> >> >>>> > performed
> >> >> >> >>>> > wrong
> >> >> >> >>>> > for
> >> >> >> >>>> > clustered "full" dispersion models
> >> >> >> >>>> >                  Project: relax
> >> >> >> >>>> >             Submitted by: tlinnet
> >> >> >> >>>> >             Submitted on: Fri 06 Jun 2014 09:08:58 AM UTC
> >> >> >> >>>> >                 Category: relax's source code
> >> >> >> >>>> > Specific analysis category: Relaxation dispersion
> >> >> >> >>>> >                 Priority: 9 - Immediate
> >> >> >> >>>> >                 Severity: 4 - Important
> >> >> >> >>>> >                   Status: None
> >> >> >> >>>> >              Assigned to: None
> >> >> >> >>>> >          Originator Name:
> >> >> >> >>>> >         Originator Email:
> >> >> >> >>>> >              Open/Closed: Open
> >> >> >> >>>> >                  Release: Repository: trunk
> >> >> >> >>>> >          Discussion Lock: Any
> >> >> >> >>>> >         Operating System: All systems
> >> >> >> >>>> >
> >> >> >> >>>> >     _______________________________________________________
> >> >> >> >>>> >
> >> >> >> >>>> > Details:
> >> >> >> >>>> >
> >> >> >> >>>> > The unpacking of the R2A and R2B parameters in the "full"
> >> >> >> >>>> > model
> >> >> >> >>>> > is
> >> >> >> >>>> > performed
> >> >> >> >>>> > wrong.
> >> >> >> >>>> > This will happen performing a clustered analysis, using one
> >> >> >> >>>> > of
> >> >> >> >>>> > the
> >> >> >> >>>> > "full"
> >> >> >> >>>> > models.
> >> >> >> >>>> >
> >> >> >> >>>> > This bug affect all analysis performed running with a
> "full"
> >> >> >> >>>> > model,
> >> >> >> >>>> > with
> >> >> >> >>>> > clustered residues.
> >> >> >> >>>> >
> >> >> >> >>>> > The bug is located in the target function:
> >> >> >> >>>> > ./target_functions/relax_disp.py
> >> >> >> >>>> >
> >> >> >> >>>> > For all the "func_MODEL_full", the unpacking of:
> >> >> >> >>>> > R20A = params[:self.end_index[0]]
> >> >> >> >>>> > R20B = params[self.end_index[0]:self.end_index[1]]
> >> >> >> >>>> >
> >> >> >> >>>> > This is wrong, since the "params" list, is ordered:
> >> >> >> >>>> > [spin, spin, spin, [dw], pA, kex], where spin =
> [nr_frq*r2a,
> >> >> >> >>>> > nr_frq*r2b]
> >> >> >> >>>> >
> >> >> >> >>>> > This ordering happens in:
> >> >> >> >>>> > ./specific_analysis/relax_disp/parameters.py
> >> >> >> >>>> > in the loop_parameters.py
> >> >> >> >>>> >
> >> >> >> >>>> > A possible solutions i shown below.
> >> >> >> >>>> > This alter the unpacking of the parameters.
> >> >> >> >>>> >
> >> >> >> >>>> > An example of profiling_cr72.py is attached.
> >> >> >> >>>> > This can be downloaded, and run in base folder of relax:
> >> >> >> >>>> > ./profiling_cr72.py .
> >> >> >> >>>> >
> >> >> >> >>>> > This is with 3 frq, and 3 spins.
> >> >> >> >>>> >
> >> >> >> >>>> > The current implementations would unpack:
> >> >> >> >>>> > ('R20A', array([  2.,   2.,   2.,   4.,   4.,   4.,  12.,
> >> >> >> >>>> > 12.,
> >> >> >> >>>> > 12.]),
> >> >> >> >>>> > 9)
> >> >> >> >>>> > ('R20B', array([ 14.,  14.,  14.,  22.,  22.,  22.,  24.,
> >> >> >> >>>> > 24.,
> >> >> >> >>>> > 24.]),
> >> >> >> >>>> > 9)
> >> >> >> >>>> >
> >> >> >> >>>> > R2A is 2, 12, 22 for the spins 0-3
> >> >> >> >>>> > R2B is, 4, 14, 24 for the spins 0-3
> >> >> >> >>>> >
> >> >> >> >>>> > The suggested unpacking loop, unpacks to:
> >> >> >> >>>> > ('R20A', array([  2.,   2.,   2.,  12.,  12.,  12.,  22.,
> >> >> >> >>>> > 22.,
> >> >> >> >>>> > 22.]),
> >> >> >> >>>> > 9)
> >> >> >> >>>> > ('R20B', array([  4.,   4.,   4.,  14.,  14.,  14.,  24.,
> >> >> >> >>>> > 24.,
> >> >> >> >>>> > 24.]),
> >> >> >> >>>> > 9)
> >> >> >> >>>> >
> >> >> >> >>>> >
> >> >> >> >>>> > -------
> >> >> >> >>>> > from numpy import array, concatenate, delete, index_exp
> >> >> >> >>>> > import numpy
> >> >> >> >>>> >
> >> >> >> >>>> > p = array([  1.000000000000000e+01, 1.000000000000000e+01,
> >> >> >> >>>> > 1.100000000000000e+01
> >> >> >> >>>> > , 1.100000000000000e+01, 1.000000000000000e+01,
> >> >> >> >>>> > 1.000000000000000e+01
> >> >> >> >>>> > , 1.100000000000000e+01, 1.100000000000000e+01,
> >> >> >> >>>> > 1.000000000000000e+00
> >> >> >> >>>> > , 1.000000000000000e+00, 9.000000000000000e-01,
> >> >> >> >>>> > 1.000000000000000e+03])
> >> >> >> >>>> >
> >> >> >> >>>> > e = [4, 8, 10]
> >> >> >> >>>> >
> >> >> >> >>>> > # Now
> >> >> >> >>>> > r2a = p[:e[0]]
> >> >> >> >>>> > print r2a
> >> >> >> >>>> > r2b = p[e[0]:e[1]]
> >> >> >> >>>> > print r2b
> >> >> >> >>>> > dw = p[e[1]:e[2]]
> >> >> >> >>>> > print dw
> >> >> >> >>>> > pA = p[e[2]]
> >> >> >> >>>> > print pA
> >> >> >> >>>> > kex = p[e[2]+1]
> >> >> >> >>>> > print kex
> >> >> >> >>>> >
> >> >> >> >>>> > print "new"
> >> >> >> >>>> > ns = 2
> >> >> >> >>>> > nf = 2
> >> >> >> >>>> >
> >> >> >> >>>> > ml = p[:e[1]]
> >> >> >> >>>> >
> >> >> >> >>>> > R20A = array([])
> >> >> >> >>>> > R20B = array([])
> >> >> >> >>>> > for i in range(0, ns):
> >> >> >> >>>> >     # Array sorted per [spin, spin, spin], where spin =
> >> >> >> >>>> > [nr_frq*r2a,
> >> >> >> >>>> > nr_frq*r2b]
> >> >> >> >>>> >     spin_AB = ml[:nf*2]
> >> >> >> >>>> >     ml = delete(ml, numpy.s_[:nf*2])
> >> >> >> >>>> >     R20A = concatenate([R20A, spin_AB[:nf] ])
> >> >> >> >>>> >     R20B = concatenate([R20B, spin_AB[nf:] ])
> >> >> >> >>>> >
> >> >> >> >>>> > print R20A
> >> >> >> >>>> > print R20B
> >> >> >> >>>> > print dw
> >> >> >> >>>> > print pA
> >> >> >> >>>> > print kex
> >> >> >> >>>> >
> >> >> >> >>>> >
> >> >> >> >>>> >
> >> >> >> >>>> >     _______________________________________________________
> >> >> >> >>>> >
> >> >> >> >>>> > File Attachments:
> >> >> >> >>>> >
> >> >> >> >>>> >
> >> >> >> >>>> > -------------------------------------------------------
> >> >> >> >>>> > Date: Fri 06 Jun 2014 09:08:58 AM UTC  Name:
> >> >> >> >>>> > profiling_cr72.py
> >> >> >> >>>> > Size:
> >> >> >> >>>> > 17kB
> >> >> >> >>>> > By: tlinnet
> >> >> >> >>>> >
> >> >> >> >>>> > <http://gna.org/bugs/download.php?file_id=20938>
> >> >> >> >>>> >
> >> >> >> >>>> >     _______________________________________________________
> >> >> >> >>>> >
> >> >> >> >>>> > Reply to this item at:
> >> >> >> >>>> >
> >> >> >> >>>> >   <http://gna.org/bugs/?22146>
> >> >> >> >>>> >
> >> >> >> >>>> > _______________________________________________
> >> >> >> >>>> >   Message sent via/by Gna!
> >> >> >> >>>> >   http://gna.org/
> >> >> >> >>>> >
> >> >> >> >>>> >
> >> >> >> >>>> > _______________________________________________
> >> >> >> >>>> > relax (http://www.nmr-relax.com)
> >> >> >> >>>> >
> >> >> >> >>>> > This is the relax-devel mailing list
> >> >> >> >>>> > [email protected]
> >> >> >> >>>> >
> >> >> >> >>>> > To unsubscribe from this list, get a password
> >> >> >> >>>> > reminder, or change your subscription options,
> >> >> >> >>>> > visit the list information page at
> >> >> >> >>>> > https://mail.gna.org/listinfo/relax-devel
> >> >> >> >>>
> >> >> >> >>>
> >> >> >> >>
> >> >> >
> >> >> >
> >> >
> >> >
> >
> >
>
_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to