I have learned SO much these days!!!

Class programming.
How numpy arrays work together, and broadcasts.
How to profile and make efficiency.

I feel like in HBO "Silicon Valley":
http://en.wikipedia.org/wiki/Silicon_Valley_%28TV_series%29

Episode 8, "Optimal Tip-to-Tip Efficiency", is exactly what is
happening right now. :-)

best
Troels

2014-06-10 17:04 GMT+02:00 Edward d'Auvergne <[email protected]>:
> Hi Troels,
>
> Is it possible to shift the mask_replace part into __init__()?  That
> might give more speed ups.  I'm not so familiar with numpy masks, so I
> couldn't have helped you with that.  Anyway, those 4 hours invested is
> guaranteed to save you much more than 4 hours when you use this later.
>
> Regards,
>
> Edward
>
>
>
> On 10 June 2014 16:51,  <[email protected]> wrote:
>> Author: tlinnet
>> Date: Tue Jun 10 16:51:33 2014
>> New Revision: 23788
>>
>> URL: http://svn.gna.org/viewcvs/relax?rev=23788&view=rev
>> Log:
>> Implemented a masked array search for where "missing" array is equal 1.
>>
>> This makes it possible to replace all values with this mask, from the value 
>> array.
>>
>> This eliminates the last loops over the missing values.
>>
>> It took over 4 hours to figure out, that the mask should be called with 
>> mask.mask,
>> to return the same fulls structure,
>>
>> Task #7807 (https://gna.org/task/index.php?7807): Speed-up of dispersion 
>> models for Clustered analysis.
>>
>> Modified:
>>     branches/disp_spin_speed/target_functions/relax_disp.py
>>
>> Modified: branches/disp_spin_speed/target_functions/relax_disp.py
>> URL: 
>> http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23788&r1=23787&r2=23788&view=diff
>> ==============================================================================
>> --- branches/disp_spin_speed/target_functions/relax_disp.py     (original)
>> +++ branches/disp_spin_speed/target_functions/relax_disp.py     Tue Jun 10 
>> 16:51:33 2014
>> @@ -29,6 +29,7 @@
>>  from math import pi
>>  from numpy import array, asarray, complex64, dot, float64, int16, max, 
>> ones, sqrt, sum, zeros
>>  import numpy as np
>> +from numpy.ma import masked_equal
>>
>>  # relax module imports.
>>  from lib.dispersion.b14 import r2eff_B14
>> @@ -418,6 +419,7 @@
>>              # The number of disp point can change per spectrometer, so we 
>> make the maximum size.
>>              self.values_a = deepcopy(self.zeros_a)
>>              self.errors_a = deepcopy(self.ones_a)
>> +            self.missing_a = zeros(self.numpy_array_shape)
>>
>>              self.cpmg_frqs_a = deepcopy(self.ones_a)
>>              self.num_disp_points_a = deepcopy(self.zeros_a)
>> @@ -456,6 +458,7 @@
>>                              for di in 
>> range(self.num_disp_points[ei][si][mi][oi]):
>>                                  if self.missing[ei][si][mi][oi][di]:
>>                                      self.has_missing = True
>> +                                    self.missing_a[ei][si][mi][oi][di] = 1.0
>>
>>              # Make copy of values structure.
>>              self.back_calc_a = deepcopy(self.values_a)
>> @@ -574,15 +577,11 @@
>>
>>          ## For all missing data points, set the back-calculated value to 
>> the measured values so that it has no effect on the chi-squared value.
>>          if self.has_missing:
>> -            # Loop over the spins.
>> -            for si in range(self.num_spins):
>> -                # Loop over the spectrometer frequencies.
>> -                for mi in range(self.num_frq):
>> -                    # Loop over the dispersion points.
>> -                    for di in range(self.num_disp_points[0][si][mi][0]):
>> -                        if self.missing[0][si][mi][0][di]:
>> -                            #self.back_calc[0][si][mi][0][di] = 
>> self.values[0][si][mi][0][di]
>> -                            self.back_calc_a[0][si][mi][0][di] = 
>> self.values[0][si][mi][0][di]
>> +            # Find the numpy mask, which tells where values should be 
>> replaced.
>> +            mask_replace = masked_equal(self.missing_a, 1.0)
>> +
>> +            # Replace with values.
>> +            self.back_calc_a[mask_replace.mask] = 
>> self.values_a[mask_replace.mask]
>>
>>          ## Calculate the chi-squared statistic.
>>          return sum((1.0 / self.errors_a * (self.values_a - 
>> self.back_calc_a))**2)
>>
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-commits mailing list
>> [email protected]
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-commits
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-devel mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to