Diff is
-from numpy import arccosh, array, cos, cosh, isfinite, fabs, min,
max, multiply, sqrt, subtract, sum
+from numpy import arccosh, array, cos, cosh, isfinite, min, max,
multiply, sqrt, subtract, sum
from numpy.ma import fix_invalid, masked_greater_equal, masked_less,
masked_where
# Repetitive calculations (to speed up calculations).
eta_scale = 2.0**(-3.0/2.0)
-def r2eff_CR72(r20a=None, r20b=None, pA=None, dw=None, kex=None,
cpmg_frqs=None, back_calc=None, num_points=None):
+def r2eff_CR72(r20a=None, r20a_orig=1.0, r20b=None, r20b_orig=0.0,
pA=None, dw=None, dw_orig=None, kex=None, cpmg_frqs=None,
back_calc=None, num_points=None):
"""Calculate the R2eff values for the CR72 model.
See the module docstring for details.
@@ -106,12 +106,18 @@ def r2eff_CR72(r20a=None, r20b=None, pA=None,
dw=None, kex=None, cpmg_frqs=None,
@keyword r20a: The R20 parameter value of state A (R2
with no exchange).
@type r20a: numpy float array of rank [NE][NS][[NM][NO][ND]
+ @keyword r20a_orig: The R20 parameter value of state A (R2
with no exchange). This is only for faster checking of zero value,
which result in no exchange.
+ @type r20a_orig: numpy float array of rank-1
@keyword r20b: The R20 parameter value of state B (R2
with no exchange).
@type r20b: numpy float array of rank [NE][NS][[NM][NO][ND]
+ @keyword r20b_orig: The R20 parameter value of state B (R2
with no exchange). This is only for faster checking of zero value,
which result in no exchange.
+ @type r20b_orig: numpy float array of rank-1
@keyword pA: The population of state A.
@type pA: float
@keyword dw: The chemical exchange difference between
states A and B in rad/s.
@type dw: numpy array of rank [NE][NS][[NM][NO][ND]
+ @keyword dw_orig: The chemical exchange difference between
states A and B in ppm. This is only for faster checking of zero value,
which result in no exchange.
+ @type dw_orig: numpy float array of rank-1
@keyword kex: The kex parameter value (the exchange
rate in rad/s).
@type kex: float
@keyword cpmg_frqs: The CPMG nu1 frequencies.
@@ -133,7 +139,7 @@ def r2eff_CR72(r20a=None, r20b=None, pA=None,
dw=None, kex=None, cpmg_frqs=None,
return
# Test if dw is zero. Wait for replacement, since this is spin specific.
- if min(fabs(dw)) == 0.0:
+ if min(dw_orig) == 0.0:
t_dw_zero = True
mask_dw_zero = masked_where(dw == 0.0, dw)
@@ -147,7 +153,9 @@ def r2eff_CR72(r20a=None, r20b=None, pA=None,
dw=None, kex=None, cpmg_frqs=None,
k_AB = pB * kex
# The Psi and zeta values.
- if sum(r20a - r20b) != 0.0:
+ if sum(r20a_orig - r20b_orig) != 0.0:
+ #if sum(r20a - r20b) != 0.0:
+ #if sum(subtract(r20a, r20b)) != 0.0:
fact = r20a - r20b - k_BA + k_AB
Psi = fact**2 - dw2 + 4.0*pA*pB*kex**2
zeta = 2.0*dw * fact
diff --git a/target_functions/relax_disp.py b/target_functions/relax_disp.py
index d19eaaf..5b2bea8 100644
--- a/target_functions/relax_disp.py
+++ b/target_functions/relax_disp.py
@@ -572,7 +572,7 @@ class Dispersion:
self.r20b_struct[:] = multiply.outer(
asarray(R20B).reshape(self.NE, self.NS, self.NM), self.no_nd_struct )
## Back calculate the R2eff values.
- r2eff_CR72(r20a=self.r20a_struct, r20b=self.r20b_struct,
pA=pA, dw=self.dw_struct, kex=kex, cpmg_frqs=self.cpmg_frqs_a,
back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
+ r2eff_CR72(r20a=self.r20a_struct, r20a_orig=asarray(R20A),
r20b=self.r20b_struct, r20b_orig=asarray(R20B), pA=pA,
dw=self.dw_struct, dw_orig=asarray(dw), kex=kex,
cpmg_frqs=self.cpmg_frqs_a, back_calc=self.back_calc
# Clean the data for all values, which is left over at the
end of arrays.
self.back_calc_a[self.mask_set_blank.mask] = 0.0
diff --git a/test_suite/shared_data/dispersion/profiling/profiling_cr72.py
b/test_suite/shared_data/dispersion/profiling/profiling_cr72.py
index 9b892b0..f437f8c 100755
--- a/test_suite/shared_data/dispersion/profiling/profiling_cr72.py
+++ b/test_suite/shared_data/dispersion/profiling/profiling_cr72.py
@@ -55,7 +55,7 @@ from specific_analyses.relax_disp.variables import
EXP_TYPE_CPMG_SQ, MODEL_B14_F
def main():
if True:
# Nr of iterations.
- nr_iter = 1
+ nr_iter = 20000
# Print statistics.
verbose = True
@@ -78,7 +78,7 @@ def main():
if verbose:
s_stats.print_stats()
- if True:
+ if False:
2014-06-11 17:04 GMT+02:00 Troels Emtekær Linnet <[email protected]>:
> Hi Edward.
>
> It is impossible for me to see a difference, if using original parameters!
>
> No improvement.
>
> 2014-06-11 17:00 GMT+02:00 Edward d'Auvergne <[email protected]>:
>> Most data will be from 2 or more magnetic fields, as that is rather
>> essential. But the change will not be significant.
>>
>> Regards,
>>
>> Edward
>>
>>
>> On 11 June 2014 16:42, Troels Emtekær Linnet <[email protected]> wrote:
>>> Hi Ed.
>>>
>>> I will keep the flag: has_missing.
>>>
>>> I guess, that most data will be one field ?
>>>
>>> So, that check is faster than computing for spins missings.
>>>
>>> Best
>>> Troels
>>>
>>> 2014-06-11 16:20 GMT+02:00 Troels Emtekær Linnet <[email protected]>:
>>>> Welllll.....
>>>>
>>>> Argghhh...
>>>>
>>>> Okay!
>>>>
>>>> But only because of global warming, and saving energy and computation
>>>> costs...
>>>>
>>>> Best
>>>> Troels
>>>>
>>>> 2014-06-11 16:19 GMT+02:00 Edward d'Auvergne <[email protected]>:
>>>>> Pity, I just tested and for the single spin case I see a 33% speed up
>>>>> with this change (nr_iter = 10000, cumtime 2.41 seconds verses 1.80
>>>>> seconds for the change). Are you really, really sure this idea should
>>>>> not be used and is not worth such a speed up?
>>>>>
>>>>> Regards,
>>>>>
>>>>> Edward
>>>>>
>>>>>
>>>>>
>>>>> On 11 June 2014 16:05, Troels Emtekær Linnet <[email protected]>
>>>>> wrote:
>>>>>> Hi Edward.
>>>>>>
>>>>>> I wont make that change.
>>>>>>
>>>>>> I will keep the clean implementation as it is.
>>>>>>
>>>>>> Best
>>>>>> Troels
>>>>>>
>>>>>> 2014-06-11 15:52 GMT+02:00 Edward d'Auvergne <[email protected]>:
>>>>>>> By the way, I just obtained a ~10% speed up using your profiling
>>>>>>> script test_suite/shared_data/dispersion/profiling/profiling_cr72.py
>>>>>>> if I send in the original parameter vector R20A, R20B, and dw arrays
>>>>>>> and check these values instead of the full structures. See the diff
>>>>>>> below for ideas. With a little more polish and more numpy ufunc
>>>>>>> usage, you should be able to squeeze more speed out of the CR72 model
>>>>>>> still.
>>>>>>>
>>>>>>> Regards,
>>>>>>>
>>>>>>> Edward
>>>>>>>
>>>>>>>
>>>>>>> P. S. Here is the diff:
>>>>>>>
>>>>>>> """
>>>>>>> Index: lib/dispersion/cr72.py
>>>>>>> ===================================================================
>>>>>>> --- lib/dispersion/cr72.py (revision 23841)
>>>>>>> +++ lib/dispersion/cr72.py (working copy)
>>>>>>> @@ -92,13 +92,13 @@
>>>>>>> """
>>>>>>>
>>>>>>> # Python module imports.
>>>>>>> -from numpy import arccosh, array, cos, cosh, isfinite, fabs, min,
>>>>>>> max, sqrt, subtract, sum
>>>>>>> +from numpy import arccosh, array, cos, cosh, isfinite, fabs, min,
>>>>>>> max, sqrt, subtract, sum, multiply
>>>>>>> from numpy.ma import fix_invalid, masked_greater_equal, masked_less,
>>>>>>> masked_where
>>>>>>>
>>>>>>> # Repetitive calculations (to speed up calculations).
>>>>>>> eta_scale = 2.0**(-3.0/2.0)
>>>>>>>
>>>>>>> -def r2eff_CR72(r20a=None, r20b=None, pA=None, dw=None, kex=None,
>>>>>>> cpmg_frqs=None, back_calc=None, num_points=None):
>>>>>>> +def r2eff_CR72(r20a_orig=None, r20b_orig=None, r20a=None, r20b=None,
>>>>>>> pA=None, dw_orig=None, dw=None, kex=None, cpmg_frqs=None,
>>>>>>> back_calc=None, num_points=None):
>>>>>>> """Calculate the R2eff values for the CR72 model.
>>>>>>>
>>>>>>> See the module docstring for details.
>>>>>>> @@ -133,7 +133,7 @@
>>>>>>> return
>>>>>>>
>>>>>>> # Test if dw is zero. Wait for replacement, since this is spin
>>>>>>> specific.
>>>>>>> - if min(fabs(dw)) == 0.0:
>>>>>>> + if min(fabs(dw_orig)) == 0.0:
>>>>>>> t_dw_zero = True
>>>>>>> mask_dw_zero = masked_where(dw == 0.0, dw)
>>>>>>>
>>>>>>> @@ -147,7 +147,7 @@
>>>>>>> k_AB = pB * kex
>>>>>>>
>>>>>>> # The Psi and zeta values.
>>>>>>> - if sum(r20a - r20b) != 0.0:
>>>>>>> + if sum(r20a_orig - r20b_orig) != 0.0:
>>>>>>> fact = r20a - r20b - k_BA + k_AB
>>>>>>> Psi = fact**2 - dw2 + 4.0*pA*pB*kex**2
>>>>>>> zeta = 2.0*dw * fact
>>>>>>> @@ -182,7 +182,8 @@
>>>>>>> return
>>>>>>>
>>>>>>> # Calculate R2eff. This uses the temporary buffer and fill
>>>>>>> directly to back_calc.
>>>>>>> - subtract(r20_kex, cpmg_frqs * arccosh( fact ), out=back_calc)
>>>>>>> + multiply(cpmg_frqs, arccosh(fact), out=back_calc)
>>>>>>> + subtract(r20_kex, back_calc, out=back_calc)
>>>>>>>
>>>>>>> # Replace data in array.
>>>>>>> # If dw is zero.
>>>>>>> Index: target_functions/relax_disp.py
>>>>>>> ===================================================================
>>>>>>> --- target_functions/relax_disp.py (revision 23841)
>>>>>>> +++ target_functions/relax_disp.py (working copy)
>>>>>>> @@ -567,7 +567,7 @@
>>>>>>> self.r20b_struct[:] = multiply.outer(
>>>>>>> asarray(R20B).reshape(self.NE, self.NS, self.NM), self.no_nd_struct )
>>>>>>>
>>>>>>> ## Back calculate the R2eff values.
>>>>>>> - r2eff_CR72(r20a=self.r20a_struct, r20b=self.r20b_struct,
>>>>>>> pA=pA, dw=self.dw_struct, kex=kex, cpmg_frqs=self.cpmg_frqs_a,
>>>>>>> back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
>>>>>>> + r2eff_CR72(r20a_orig=R20A, r20b_orig=R20B,
>>>>>>> r20a=self.r20a_struct, r20b=self.r20b_struct, pA=pA, dw_orig=dw,
>>>>>>> dw=self.dw_struct, kex=kex, cpmg_frqs=self.cpmg_frqs_a,
>>>>>>> back_calc=self.back_calc_a, num_points=self.num_disp_points_a)
>>>>>>>
>>>>>>> # Clean the data for all values, which is left over at the
>>>>>>> end of arrays.
>>>>>>> self.back_calc_a = self.back_calc_a*self.disp_struct
>>>>>>> Index: test_suite/shared_data/dispersion/profiling/profiling_cr72.py
>>>>>>> ===================================================================
>>>>>>> --- test_suite/shared_data/dispersion/profiling/profiling_cr72.py
>>>>>>> (revision 23841)
>>>>>>> +++ test_suite/shared_data/dispersion/profiling/profiling_cr72.py
>>>>>>> (working copy)
>>>>>>> @@ -55,7 +55,7 @@
>>>>>>> def main():
>>>>>>> if True:
>>>>>>> # Nr of iterations.
>>>>>>> - nr_iter = 1
>>>>>>> + nr_iter = 10000
>>>>>>>
>>>>>>> # Print statistics.
>>>>>>> verbose = True
>>>>>>> @@ -275,7 +275,7 @@
>>>>>>> back_calc = array([0.0]*len(cpmg_frqs[ei][mi][oi]))
>>>>>>>
>>>>>>> # Initialise call to function.
>>>>>>> - r2eff_CR72(r20a=r20a, r20b=r20b, pA=pA,
>>>>>>> dw=dw_frq, kex=kex, cpmg_frqs=array(cpmg_frqs[ei][mi][oi]),
>>>>>>> back_calc=back_calc, num_points=len(back_calc))
>>>>>>> + r2eff_CR72(r20a_orig=R20A, r20b_orig=R20B,
>>>>>>> r20a=r20a, r20b=r20b, pA=pA, dw_orig=dw_frq, dw=dw_frq, kex=kex,
>>>>>>> cpmg_frqs=array(cpmg_frqs[ei][mi][oi]), back_calc=back_calc,
>>>>>>> num_points=len(back_calc))
>>>>>>>
>>>>>>> for oi in range(len(self.offset)):
>>>>>>> for di in range(len(self.points[mi])):
>>>>>>> @@ -505,4 +505,4 @@
>>>>>>> model = C1.calc(params)
>>>>>>> print(model)
>>>>>>>
>>>>>>> -#test_reshape()
>>>>>>> \ No newline at end of file
>>>>>>> +#test_reshape()
>>>>>>> """
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> On 11 June 2014 15:45, Edward d'Auvergne <[email protected]> wrote:
>>>>>>>> You wait until you see what happens with your multiple offset R1rho
>>>>>>>> data ;)
>>>>>>>>
>>>>>>>> On 11 June 2014 15:42, Troels Emtekær Linnet <[email protected]>
>>>>>>>> wrote:
>>>>>>>>> The progress is EXTREME.
>>>>>>>>>
>>>>>>>>> Per spin, I am now 1.5 X faster per spin calculation.
>>>>>>>>> Per cluster of 100, I am now 33X faster.
>>>>>>>>>
>>>>>>>>> Go one more version up, and it is 64 X faster.
>>>>>>>>>
>>>>>>>>> WOW!
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> ----
>>>>>>>>> Checked on MacBook Pro
>>>>>>>>> 2.4 GHz Intel Core i5
>>>>>>>>> 8 GB 1067 Mhz DDR3 RAM.
>>>>>>>>>
>>>>>>>>> Timing for:
>>>>>>>>> 3 fields
>>>>>>>>> ('sfrq: ', 600000000.0, 'number of cpmg frq', 15, array([ 2., 6., 10.,
>>>>>>>>> 14., 18., 22., 26., 30., 34., 38., 42., 46., 50., 54., 58.]))
>>>>>>>>> ('sfrq: ', 800000000.0, 'number of cpmg frq', 20, array([ 2., 6., 10.,
>>>>>>>>> 14., 18., 22., 26., 30., 34., 38., 42., 46., 50., 54., 58., 62., 66.,
>>>>>>>>> 70., 74., 78.]))
>>>>>>>>> ('sfrq: ', 900000000.0, 'number of cpmg frq', 22, array([ 2., 6., 10.,
>>>>>>>>> 14., 18., 22., 26., 30., 34., 38., 42., 46., 50., 54., 58., 62., 66.,
>>>>>>>>> 70., 74., 78., 82., 86.]))
>>>>>>>>>
>>>>>>>>> iterations of function call: 1000
>>>>>>>>>
>>>>>>>>> Timed for simulating 1 or 100 clustered spins.
>>>>>>>>>
>>>>>>>>> Find tags:
>>>>>>>>> svn ls "^/tags"
>>>>>>>>> svn switch ^/tags/3.2.2
>>>>>>>>>
>>>>>>>>> ##############################################################################################
>>>>>>>>> ncalls tottime percall cumtime percall
>>>>>>>>> filename:lineno(function)
>>>>>>>>>
>>>>>>>>> ############################
>>>>>>>>> For disp_spin_speed r23841 #
>>>>>>>>> ############################
>>>>>>>>> 1 spin:
>>>>>>>>> 1 0.000 0.000 0.373 0.373 <string>:1(<module>)
>>>>>>>>> 1 0.001 0.001 0.373 0.373 pf:427(single)
>>>>>>>>> 1000 0.002 0.000 0.366 0.000 pf:413(calc)
>>>>>>>>> 1000 0.012 0.000 0.363 0.000
>>>>>>>>> relax_disp.py:994(func_CR72_full)
>>>>>>>>> 1000 0.027 0.000 0.345 0.000
>>>>>>>>> relax_disp.py:545(calc_CR72_chi2)
>>>>>>>>> 1003 0.148 0.000 0.260 0.000 cr72.py:101(r2eff_CR72)
>>>>>>>>> 7043 0.059 0.000 0.059 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 1000 0.004 0.000 0.052 0.000
>>>>>>>>> core.py:1701(masked_where)
>>>>>>>>> 3006 0.006 0.000 0.036 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 3006 0.004 0.000 0.028 0.000 _methods.py:23(_sum)
>>>>>>>>> 3000 0.024 0.000 0.024 0.000 {method 'outer' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 1000 0.013 0.000 0.024 0.000 chi2.py:72(chi2_rankN)
>>>>>>>>> 1000 0.002 0.000 0.024 0.000 {method 'view' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>> 2006 0.003 0.000 0.023 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 1000 0.003 0.000 0.021 0.000
>>>>>>>>> core.py:2774(__array_finalize__)
>>>>>>>>>
>>>>>>>>> 100 spins:
>>>>>>>>> 1 0.000 0.000 1.630 1.630 <string>:1(<module>)
>>>>>>>>> 1 0.003 0.003 1.630 1.630 pf:449(cluster)
>>>>>>>>> 1000 0.004 0.000 1.532 0.002 pf:413(calc)
>>>>>>>>> 1000 0.020 0.000 1.528 0.002
>>>>>>>>> relax_disp.py:994(func_CR72_full)
>>>>>>>>> 1000 0.073 0.000 1.495 0.001
>>>>>>>>> relax_disp.py:545(calc_CR72_chi2)
>>>>>>>>> 1300 1.071 0.001 1.285 0.001 cr72.py:101(r2eff_CR72)
>>>>>>>>> 8528 0.131 0.000 0.131 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 1 0.000 0.000 0.094 0.094 pf:106(__init__)
>>>>>>>>> 3000 0.083 0.000 0.083 0.000 {method 'outer' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 3600 0.009 0.000 0.082 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 1000 0.055 0.000 0.079 0.000 chi2.py:72(chi2_rankN)
>>>>>>>>> 1000 0.006 0.000 0.078 0.000
>>>>>>>>> core.py:1701(masked_where)
>>>>>>>>> 1 0.019 0.019 0.069 0.069
>>>>>>>>> pf:173(return_r2eff_arrays)
>>>>>>>>> 3600 0.006 0.000 0.067 0.000 _methods.py:23(_sum)
>>>>>>>>> 2600 0.006 0.000 0.049 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 2600 0.005 0.000 0.042 0.000 _methods.py:19(_amin)
>>>>>>>>> 1000 0.004 0.000 0.032 0.000 {method 'view' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> ############################
>>>>>>>>> For disp_spin_speed r23806 #
>>>>>>>>> ############################
>>>>>>>>> 1 spin:
>>>>>>>>> 1 0.000 0.000 0.546 0.546 <string>:1(<module>)
>>>>>>>>> 1 0.002 0.002 0.546 0.546 pf:427(single)
>>>>>>>>> 1000 0.003 0.000 0.538 0.001 pf:413(calc)
>>>>>>>>> 1000 0.015 0.000 0.535 0.001
>>>>>>>>> relax_disp.py:989(func_CR72_full)
>>>>>>>>> 1000 0.042 0.000 0.513 0.001
>>>>>>>>> relax_disp.py:523(calc_CR72_chi2)
>>>>>>>>> 1003 0.142 0.000 0.365 0.000 cr72.py:101(r2eff_CR72)
>>>>>>>>> 2003 0.055 0.000 0.181 0.000
>>>>>>>>> numeric.py:2056(allclose)
>>>>>>>>> 10046 0.083 0.000 0.083 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 3000 0.045 0.000 0.076 0.000 shape_base.py:761(tile)
>>>>>>>>> 4015 0.006 0.000 0.053 0.000 fromnumeric.py:1762(any)
>>>>>>>>> 4015 0.004 0.000 0.039 0.000 {method 'any' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>> 4015 0.005 0.000 0.035 0.000 _methods.py:31(_any)
>>>>>>>>> 2003 0.003 0.000 0.028 0.000 fromnumeric.py:1842(all)
>>>>>>>>> 1000 0.014 0.000 0.026 0.000 chi2.py:72(chi2_rankN)
>>>>>>>>> 2003 0.004 0.000 0.026 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 4138 0.012 0.000 0.025 0.000 numeric.py:2320(seterr)
>>>>>>>>> 2003 0.002 0.000 0.020 0.000 {method 'all' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>> 2003 0.003 0.000 0.019 0.000 _methods.py:23(_sum)
>>>>>>>>> 2003 0.003 0.000 0.018 0.000 _methods.py:35(_all)
>>>>>>>>> 14046 0.016 0.000 0.016 0.000
>>>>>>>>> {numpy.core.multiarray.array}
>>>>>>>>>
>>>>>>>>> 100 spins:
>>>>>>>>> 1 0.000 0.000 2.036 2.036 <string>:1(<module>)
>>>>>>>>> 1 0.003 0.003 2.036 2.036 pf:449(cluster)
>>>>>>>>> 1000 0.004 0.000 1.905 0.002 pf:413(calc)
>>>>>>>>> 1000 0.022 0.000 1.901 0.002
>>>>>>>>> relax_disp.py:989(func_CR72_full)
>>>>>>>>> 1000 0.098 0.000 1.865 0.002
>>>>>>>>> relax_disp.py:523(calc_CR72_chi2)
>>>>>>>>> 1300 0.986 0.001 1.511 0.001 cr72.py:101(r2eff_CR72)
>>>>>>>>> 2300 0.238 0.000 0.434 0.000
>>>>>>>>> numeric.py:2056(allclose)
>>>>>>>>> 3000 0.058 0.000 0.238 0.000 shape_base.py:761(tile)
>>>>>>>>> 4000 0.154 0.000 0.154 0.000 {method 'repeat' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>> 11828 0.147 0.000 0.147 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 1 0.000 0.000 0.129 0.129 pf:106(__init__)
>>>>>>>>> 1 0.021 0.021 0.098 0.098
>>>>>>>>> pf:173(return_r2eff_arrays)
>>>>>>>>> 1000 0.054 0.000 0.078 0.000 chi2.py:72(chi2_rankN)
>>>>>>>>> 4609 0.008 0.000 0.073 0.000 fromnumeric.py:1762(any)
>>>>>>>>> 2300 0.007 0.000 0.055 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 4609 0.005 0.000 0.054 0.000 {method 'any' of
>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>> 4609 0.006 0.000 0.049 0.000 _methods.py:31(_any)
>>>>>>>>> 2300 0.004 0.000 0.044 0.000 _methods.py:23(_sum)
>>>>>>>>> 2300 0.005 0.000 0.039 0.000 fromnumeric.py:1842(all)
>>>>>>>>> 4732 0.016 0.000 0.035 0.000 numeric.py:2320(seterr)
>>>>>>>>> 4600 0.032 0.000 0.032 0.000 {abs}
>>>>>>>>> 1301 0.004 0.000 0.030 0.000
>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>> 17016 0.028 0.000 0.028 0.000
>>>>>>>>> {numpy.core.multiarray.array}
>>>>>>>>>
>>>>>>>>> ############################
>>>>>>>>> For trunk r23785 #
>>>>>>>>> ############################
>>>>>>>>> 1 spin:
>>>>>>>>> 1 0.000 0.000 0.572 0.572 <string>:1(<module>)
>>>>>>>>> 1 0.002 0.002 0.572 0.572 pf:427(single)
>>>>>>>>> 1000 0.002 0.000 0.565 0.001 pf:413(calc)
>>>>>>>>> 1000 0.013 0.000 0.563 0.001
>>>>>>>>> relax_disp.py:908(func_CR72_full)
>>>>>>>>> 1000 0.061 0.000 0.543 0.001
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 3003 0.294 0.000 0.400 0.000 cr72.py:100(r2eff_CR72)
>>>>>>>>> 12036 0.100 0.000 0.100 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 3000 0.042 0.000 0.078 0.000 chi2.py:32(chi2)
>>>>>>>>> 6003 0.011 0.000 0.072 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 6003 0.008 0.000 0.055 0.000 _methods.py:23(_sum)
>>>>>>>>> 3003 0.005 0.000 0.037 0.000
>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>> 3003 0.004 0.000 0.033 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 3003 0.004 0.000 0.032 0.000 _methods.py:15(_amax)
>>>>>>>>> 3003 0.004 0.000 0.029 0.000 _methods.py:19(_amin)
>>>>>>>>> 6003 0.006 0.000 0.006 0.000 {isinstance}
>>>>>>>>>
>>>>>>>>> 100 spins:
>>>>>>>>> 1 0.000 0.000 53.864 53.864 <string>:1(<module>)
>>>>>>>>> 1 0.004 0.004 53.864 53.864 pf:449(cluster)
>>>>>>>>> 1000 0.005 0.000 53.777 0.054 pf:413(calc)
>>>>>>>>> 1000 0.022 0.000 53.772 0.054
>>>>>>>>> relax_disp.py:908(func_CR72_full)
>>>>>>>>> 1000 6.340 0.006 53.735 0.054
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 300300 28.936 0.000 39.278 0.000 cr72.py:100(r2eff_CR72)
>>>>>>>>> 1200927 9.811 0.000 9.811 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 300000 4.227 0.000 7.738 0.000 chi2.py:32(chi2)
>>>>>>>>> 600300 1.047 0.000 7.051 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 600300 0.752 0.000 5.434 0.000 _methods.py:23(_sum)
>>>>>>>>> 300300 0.445 0.000 3.580 0.000
>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>> 300300 0.413 0.000 3.221 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 300300 0.431 0.000 3.134 0.000 _methods.py:15(_amax)
>>>>>>>>> 300300 0.383 0.000 2.808 0.000 _methods.py:19(_amin)
>>>>>>>>> 600300 0.570 0.000 0.570 0.000 {isinstance}
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> ############################
>>>>>>>>> For tag 3.2.2 #
>>>>>>>>> svn switch ^/tags/3.2.2 #
>>>>>>>>> ############################
>>>>>>>>>
>>>>>>>>> 1 spin:
>>>>>>>>> 1 0.000 0.000 0.569 0.569 <string>:1(<module>)
>>>>>>>>> 1 0.002 0.002 0.569 0.569 pf:427(single)
>>>>>>>>> 1000 0.002 0.000 0.562 0.001 pf:413(calc)
>>>>>>>>> 1000 0.005 0.000 0.560 0.001
>>>>>>>>> relax_disp.py:907(func_CR72_full)
>>>>>>>>> 1000 0.062 0.000 0.555 0.001
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 3003 0.299 0.000 0.407 0.000 cr72.py:100(r2eff_CR72)
>>>>>>>>> 12036 0.103 0.000 0.103 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 3000 0.044 0.000 0.082 0.000 chi2.py:32(chi2)
>>>>>>>>> 6003 0.011 0.000 0.074 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 6003 0.008 0.000 0.057 0.000 _methods.py:23(_sum)
>>>>>>>>> 3003 0.005 0.000 0.037 0.000
>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>> 3003 0.004 0.000 0.034 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 3003 0.004 0.000 0.033 0.000 _methods.py:15(_amax)
>>>>>>>>> 3003 0.004 0.000 0.029 0.000 _methods.py:19(_amin)
>>>>>>>>> 6003 0.006 0.000 0.006 0.000 {isinstance}
>>>>>>>>>
>>>>>>>>> 100 spins:
>>>>>>>>> 1 0.000 0.000 53.987 53.987 <string>:1(<module>)
>>>>>>>>> 1 0.004 0.004 53.987 53.987 pf:449(cluster)
>>>>>>>>> 1000 0.004 0.000 53.907 0.054 pf:413(calc)
>>>>>>>>> 1000 0.008 0.000 53.903 0.054
>>>>>>>>> relax_disp.py:907(func_CR72_full)
>>>>>>>>> 1000 6.367 0.006 53.895 0.054
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 300300 28.870 0.000 39.278 0.000 cr72.py:100(r2eff_CR72)
>>>>>>>>> 1200927 9.917 0.000 9.917 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 300000 4.283 0.000 7.853 0.000 chi2.py:32(chi2)
>>>>>>>>> 600300 1.066 0.000 7.154 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 600300 0.745 0.000 5.516 0.000 _methods.py:23(_sum)
>>>>>>>>> 300300 0.447 0.000 3.565 0.000
>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>> 300300 0.417 0.000 3.259 0.000
>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>> 300300 0.422 0.000 3.118 0.000 _methods.py:15(_amax)
>>>>>>>>> 300300 0.392 0.000 2.841 0.000 _methods.py:19(_amin)
>>>>>>>>> 600300 0.572 0.000 0.572 0.000 {isinstance}
>>>>>>>>>
>>>>>>>>> ############################
>>>>>>>>> For tag 3.2.1 #
>>>>>>>>> svn switch ^/tags/3.2.1 #
>>>>>>>>> ############################
>>>>>>>>> 1 spin:
>>>>>>>>> 1 0.000 0.000 1.021 1.021 <string>:1(<module>)
>>>>>>>>> 1 0.002 0.002 1.021 1.021 pf:427(single)
>>>>>>>>> 1000 0.002 0.000 1.014 0.001 pf:413(calc)
>>>>>>>>> 1000 0.005 0.000 1.012 0.001
>>>>>>>>> relax_disp.py:907(func_CR72_full)
>>>>>>>>> 1000 0.055 0.000 1.007 0.001
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 3003 0.861 0.000 0.864 0.000 cr72.py:98(r2eff_CR72)
>>>>>>>>> 3000 0.043 0.000 0.084 0.000 chi2.py:32(chi2)
>>>>>>>>> 3000 0.006 0.000 0.042 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 3000 0.004 0.000 0.032 0.000 _methods.py:23(_sum)
>>>>>>>>> 3027 0.028 0.000 0.028 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 8049 0.007 0.000 0.007 0.000 {range}
>>>>>>>>> 1 0.000 0.000 0.006 0.006 pf:106(__init__)
>>>>>>>>> 3 0.000 0.000 0.004 0.001
>>>>>>>>> numeric.py:1509(array_repr)
>>>>>>>>> 3 0.000 0.000 0.004 0.001
>>>>>>>>> arrayprint.py:343(array2string)
>>>>>>>>> 3 0.000 0.000 0.004 0.001
>>>>>>>>> arrayprint.py:233(_array2string)
>>>>>>>>> 3000 0.004 0.000 0.004 0.000 {isinstance}
>>>>>>>>>
>>>>>>>>> 100 spins:
>>>>>>>>> 1 0.000 0.000 104.086 104.086 <string>:1(<module>)
>>>>>>>>> 1 0.004 0.004 104.086 104.086 pf:449(cluster)
>>>>>>>>> 1000 0.004 0.000 103.944 0.104 pf:413(calc)
>>>>>>>>> 1000 0.009 0.000 103.940 0.104
>>>>>>>>> relax_disp.py:907(func_CR72_full)
>>>>>>>>> 1000 6.057 0.006 103.931 0.104
>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>> 300300 88.604 0.000 88.888 0.000 cr72.py:98(r2eff_CR72)
>>>>>>>>> 300000 4.408 0.000 8.695 0.000 chi2.py:32(chi2)
>>>>>>>>> 300000 0.627 0.000 4.287 0.000 fromnumeric.py:1621(sum)
>>>>>>>>> 300000 0.458 0.000 3.296 0.000 _methods.py:23(_sum)
>>>>>>>>> 300027 2.839 0.000 2.839 0.000 {method 'reduce' of
>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>> 703722 0.672 0.000 0.672 0.000 {range}
>>>>>>>>> 300000 0.364 0.000 0.364 0.000 {isinstance}
>>>>>>>>> 1 0.000 0.000 0.139 0.139 pf:106(__init__)
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> ################# System information ######################
>>>>>>>>> Processor fabric: Uni-processor.
>>>>>>>>>
>>>>>>>>>
>>>>>>>>> Hardware information:
>>>>>>>>> Machine: x86_64
>>>>>>>>> Processor: i386
>>>>>>>>> Processor name: Intel(R) Core(TM) i5-2435M CPU @ 2.40GHz
>>>>>>>>> Endianness: little
>>>>>>>>> Total RAM size: 2048.0 Mb
>>>>>>>>> Total swap size: 6144.0 Mb
>>>>>>>>>
>>>>>>>>> Operating system information:
>>>>>>>>> System: Darwin
>>>>>>>>> Release: 13.2.0
>>>>>>>>> Version: Darwin Kernel Version 13.2.0: Thu Apr 17
>>>>>>>>> 23:03:13 PDT 2014; root:xnu-2422.100.13~1/RELEASE_X86_64
>>>>>>>>> Mac version: 10.9.3 (, , ) x86_64
>>>>>>>>> Distribution:
>>>>>>>>> Full platform string: Darwin-13.2.0-x86_64-i386-64bit
>>>>>>>>>
>>>>>>>>> Python information:
>>>>>>>>> Architecture: 64bit
>>>>>>>>> Python version: 2.7.6
>>>>>>>>> Python branch:
>>>>>>>>> Python build: default, Apr 11 2014 11:55:30
>>>>>>>>> Python compiler: GCC 4.2.1 (Apple Inc. build 5666) (dot 3)
>>>>>>>>> Libc version:
>>>>>>>>> Python implementation: CPython
>>>>>>>>> Python revision:
>>>>>>>>> Python executable:
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/bin/python
>>>>>>>>> Python flags: sys.flags(debug=0, py3k_warning=0,
>>>>>>>>> division_warning=0, division_new=0, inspect=0, interactive=0,
>>>>>>>>> optimize=0, dont_write_bytecode=0, no_user_site=0, no_site=0,
>>>>>>>>> ignore_environment=0, tabcheck=0, verbose=0, unicode=0,
>>>>>>>>> bytes_warning=0, hash_randomization=0)
>>>>>>>>> Python float info:
>>>>>>>>> sys.float_info(max=1.7976931348623157e+308, max_exp=1024,
>>>>>>>>> max_10_exp=308, min=2.2250738585072014e-308, min_exp=-1021,
>>>>>>>>> min_10_exp=-307, dig=15, mant_dig=53, epsilon=2.220446049250313e-16,
>>>>>>>>> radix=2, rounds=1)
>>>>>>>>> Python module path: ['/Users/tlinnet/software/relax_trunk',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python27.zip',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/plat-darwin',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/plat-mac',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/plat-mac/lib-scriptpackages',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/lib-tk',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/lib-old',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/lib-dynload',
>>>>>>>>> '/Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages',
>>>>>>>>> '/Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/PIL',
>>>>>>>>> '/Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/site-packages']
>>>>>>>>>
>>>>>>>>> Python packages and modules (most are optional):
>>>>>>>>>
>>>>>>>>> Name Installed Version Path
>>>>>>>>> minfx True 1.0.6
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/minfx
>>>>>>>>> bmrblib True 1.0.3
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/bmrblib
>>>>>>>>> numpy True 1.8.0
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/numpy
>>>>>>>>> scipy True 0.13.3
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/scipy
>>>>>>>>> wxPython True 2.9.2.4 osx-cocoa (classic)
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/wx
>>>>>>>>> matplotlib True 1.3.1
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/matplotlib
>>>>>>>>> mpi4py False
>>>>>>>>> epydoc True 3.0.1
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/epydoc
>>>>>>>>> optparse True 1.5.3
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/optparse.pyc
>>>>>>>>> readline True
>>>>>>>>> /Users/tlinnet/Library/Enthought/Canopy_64bit/User/lib/python2.7/site-packages/readline.so
>>>>>>>>> profile True
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/profile.pyc
>>>>>>>>> bz2 True
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/lib-dynload/bz2.so
>>>>>>>>> gzip True
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/gzip.pyc
>>>>>>>>> io True
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/io.pyc
>>>>>>>>> xml True 0.8.4 (internal)
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/xml/__init__.pyc
>>>>>>>>> xml.dom.minidom True
>>>>>>>>> /Applications/Canopy.app/appdata/canopy-1.4.0.1938.macosx-x86_64/Canopy.app/Contents/lib/python2.7/xml/dom/minidom.pyc
>>>>>>>>>
>>>>>>>>> relax information:
>>>>>>>>> Version: repository checkout r23785
>>>>>>>>> svn+ssh://svn.gna.org/svn/relax/trunk
>>>>>>>>> Processor fabric: Uni-processor.
>>>>>>>>>
>>>>>>>>> relax C modules:
>>>>>>>>>
>>>>>>>>> Module Compiled File type
>>>>>>>>> Path
>>>>>>>>> target_functions.relax_fit True 2-way ['Mach-O 64-bit bundle
>>>>>>>>> x86_64', 'Mach-O bundle i386']
>>>>>>>>> /Users/tlinnet/software/relax_trunk/target_functions/relax_fit.so
>>>>>>>>>
>>>>>>>>> 2014-06-11 15:38 GMT+02:00 Troels Emtekær Linnet
>>>>>>>>> <[email protected]>:
>>>>>>>>>> Hi Ed.
>>>>>>>>>>
>>>>>>>>>> I am now faster than trunk per spin, even if I replaces the cr72.py
>>>>>>>>>> file.
>>>>>>>>>>
>>>>>>>>>> 10000 iterations:
>>>>>>>>>>
>>>>>>>>>> BRANCH:
>>>>>>>>>> 1 0.000 0.000 4.060 4.060 <string>:1(<module>)
>>>>>>>>>> 1 0.016 0.016 4.060 4.060 pf:427(single)
>>>>>>>>>> 10000 0.028 0.000 4.038 0.000 pf:413(calc)
>>>>>>>>>> 10000 0.133 0.000 4.010 0.000
>>>>>>>>>> relax_disp.py:994(func_CR72_full)
>>>>>>>>>> 10000 0.301 0.000 3.803 0.000
>>>>>>>>>> relax_disp.py:545(calc_CR72_chi2)
>>>>>>>>>> 10003 1.629 0.000 2.862 0.000 cr72.py:101(r2eff_CR72)
>>>>>>>>>> 70043 0.647 0.000 0.647 0.000 {method 'reduce' of
>>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>>> 10000 0.042 0.000 0.572 0.000
>>>>>>>>>> core.py:1701(masked_where)
>>>>>>>>>> 30006 0.061 0.000 0.395 0.000
>>>>>>>>>> fromnumeric.py:1621(sum)
>>>>>>>>>> 30006 0.040 0.000 0.305 0.000 _methods.py:23(_sum)
>>>>>>>>>> 10000 0.142 0.000 0.269 0.000 chi2.py:72(chi2_rankN)
>>>>>>>>>> 30000 0.267 0.000 0.267 0.000 {method 'outer' of
>>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>>> 10000 0.026 0.000 0.262 0.000 {method 'view' of
>>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>>> 20006 0.032 0.000 0.250 0.000
>>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>>>
>>>>>>>>>> TRUNK, with new CR72.
>>>>>>>>>> 1 0.000 0.000 6.585 6.585 <string>:1(<module>)
>>>>>>>>>> 1 0.016 0.016 6.585 6.585 pf:427(single)
>>>>>>>>>> 10000 0.026 0.000 6.562 0.001 pf:413(calc)
>>>>>>>>>> 10000 0.133 0.000 6.536 0.001
>>>>>>>>>> relax_disp.py:908(func_CR72_full)
>>>>>>>>>> 10000 0.601 0.000 6.327 0.001
>>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>>> 30003 3.153 0.000 4.907 0.000 cr72.py:101(r2eff_CR72)
>>>>>>>>>> 180042 1.356 0.000 1.356 0.000 {method 'reduce' of
>>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>>> 90006 0.165 0.000 1.108 0.000
>>>>>>>>>> fromnumeric.py:1621(sum)
>>>>>>>>>> 90006 0.109 0.000 0.792 0.000 _methods.py:23(_sum)
>>>>>>>>>> 30000 0.423 0.000 0.775 0.000 chi2.py:32(chi2)
>>>>>>>>>> 60006 0.096 0.000 0.647 0.000
>>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>>> 60006 0.074 0.000 0.483 0.000 _methods.py:19(_amin)
>>>>>>>>>> 30003 0.044 0.000 0.350 0.000
>>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>>>
>>>>>>>>>> TRUNK, with original CR72.
>>>>>>>>>> 1 0.000 0.000 5.994 5.994 <string>:1(<module>)
>>>>>>>>>> 1 0.018 0.018 5.994 5.994 pf:427(single)
>>>>>>>>>> 10000 0.027 0.000 5.971 0.001 pf:413(calc)
>>>>>>>>>> 10000 0.142 0.000 5.944 0.001
>>>>>>>>>> relax_disp.py:908(func_CR72_full)
>>>>>>>>>> 10000 0.639 0.000 5.722 0.001
>>>>>>>>>> relax_disp.py:456(calc_CR72_chi2)
>>>>>>>>>> 30003 3.093 0.000 4.205 0.000 cr72.py:100(r2eff_CR72)
>>>>>>>>>> 120036 1.051 0.000 1.051 0.000 {method 'reduce' of
>>>>>>>>>> 'numpy.ufunc' objects}
>>>>>>>>>> 30000 0.455 0.000 0.830 0.000 chi2.py:32(chi2)
>>>>>>>>>> 60003 0.113 0.000 0.755 0.000
>>>>>>>>>> fromnumeric.py:1621(sum)
>>>>>>>>>> 60003 0.078 0.000 0.580 0.000 _methods.py:23(_sum)
>>>>>>>>>> 30003 0.049 0.000 0.382 0.000
>>>>>>>>>> fromnumeric.py:2048(amax)
>>>>>>>>>> 30003 0.048 0.000 0.350 0.000
>>>>>>>>>> fromnumeric.py:2132(amin)
>>>>>>>>>> 30003 0.045 0.000 0.333 0.000 _methods.py:15(_amax)
>>>>>>>>>> 30003 0.041 0.000 0.302 0.000 _methods.py:19(_amin)
>>>>>>>>>> 60003 0.061 0.000 0.061 0.000 {isinstance}
>>>>>>>>>> 20002 0.061 0.000 0.061 0.000 {method 'flatten' of
>>>>>>>>>> 'numpy.ndarray' objects}
>>>>>>>>>> 50046 0.048 0.000 0.048 0.000 {range}
>>>>>>>>>
>>>>>>>>> _______________________________________________
>>>>>>>>> relax (http://www.nmr-relax.com)
>>>>>>>>>
>>>>>>>>> This is the relax-devel mailing list
>>>>>>>>> [email protected]
>>>>>>>>>
>>>>>>>>> To unsubscribe from this list, get a password
>>>>>>>>> reminder, or change your subscription options,
>>>>>>>>> visit the list information page at
>>>>>>>>> https://mail.gna.org/listinfo/relax-devel
_______________________________________________
relax (http://www.nmr-relax.com)
This is the relax-devel mailing list
[email protected]
To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel