Hi Troels,

This commit seems to be missing the lib.dispersion.tsmfk01 changes
needed to make the model functional.

Cheers,

Edward



On 12 June 2014 13:56,  <[email protected]> wrote:
> Author: tlinnet
> Date: Thu Jun 12 13:56:12 2014
> New Revision: 23880
>
> URL: http://svn.gna.org/viewcvs/relax?rev=23880&view=rev
> Log:
> Large increase in speed for model TSMFK01 by changing target functions to use 
> multidimensional numpy arrays in calculation.
>
> This is done by restructuring data into multidimensional arrays of dimension 
> [NE][NS][NM][NO][ND], which are
> number of spins, number of magnetic field strength, number of offsets, 
> maximum number of dispersion point.
>
> The speed comes from using numpy ufunc operations.
>
> The new version is 2.4X as fast per spin calculation, and 54X as fast for 
> clustered analysis.
>
> The different in timings for 3 spectrometer frequencies, calculated for 1 
> spin or 100 clustered spins with 1000 iterations are:
>
> ----
> VERSION 3.2.2
> ----
> 1 spin:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000    0.262    0.262 <string>:1(<module>)
> 100 spin:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000   25.391   25.391 <string>:1(<module>)
> ----
> New version
> ---
>
> 1 spin:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000    0.111    0.111 <string>:1(<module>)
> 100 spin:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000    0.468    0.468 <string>:1(<module>)
>
> Task #7807 (https://gna.org/task/index.php?7807): Speed-up of dispersion 
> models for Clustered analysis.
>
> Modified:
>     branches/disp_spin_speed/target_functions/relax_disp.py
>
> Modified: branches/disp_spin_speed/target_functions/relax_disp.py
> URL: 
> http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23880&r1=23879&r2=23880&view=diff
> ==============================================================================
> --- branches/disp_spin_speed/target_functions/relax_disp.py     (original)
> +++ branches/disp_spin_speed/target_functions/relax_disp.py     Thu Jun 12 
> 13:56:12 2014
> @@ -395,7 +395,7 @@
>              self.func = self.func_ns_mmq_3site_linear
>
>          # Setup special numpy array structures, for higher dimensional 
> computation.
> -        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL]:
> +        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, 
> MODEL_TSMFK01]:
>              # Get the shape of back_calc structure.
>              # If using just one field, or having the same number of 
> dispersion points, the shape would extend to that number.
>              # Shape has to be: [ei][si][mi][oi].
> @@ -478,7 +478,7 @@
>                                  if self.missing[ei][si][mi][oi][di]:
>                                      self.has_missing = True
>                                      missing_a[ei][si][mi][oi][di] = 1.0
> -                                if model in [MODEL_B14, MODEL_B14_FULL]:
> +                                if model in [MODEL_B14, MODEL_B14_FULL, 
> MODEL_TSMFK01]:
>                                      self.power_a[ei][si][mi][oi][di] = 
> int(round(self.cpmg_frqs[ei][mi][0][di] * self.relax_times[ei][mi]))
>                                      self.tau_cpmg_a[ei][si][mi][oi][di] = 
> 0.25 / self.cpmg_frqs[ei][mi][0][di]
>
> @@ -1989,29 +1989,22 @@
>          dw = params[self.end_index[0]:self.end_index[1]]
>          k_AB = params[self.end_index[1]]
>
> -        # Initialise.
> -        chi2_sum = 0.0
> -
> -        # Loop over the spins.
> -        for si in range(self.num_spins):
> -            # Loop over the spectrometer frequencies.
> -            for mi in range(self.num_frq):
> -                # The R20 index.
> -                r20a_index = mi + si*self.num_frq
> -
> -                # Convert dw from ppm to rad/s.
> -                dw_frq = dw[si] * self.frqs[0][si][mi]
> -
> -                # Back calculate the R2eff values.
> -                r2eff_TSMFK01(r20a=R20A[r20a_index], dw=dw_frq, dw_orig=dw, 
> k_AB=k_AB, tcp=self.tau_cpmg[0][mi], back_calc=self.back_calc[0][si][mi][0], 
> num_points=self.num_disp_points[0][si][mi][0])
> -
> -                # For all missing data points, set the back-calculated value 
> to the measured values so that it has no effect on the chi-squared value.
> -                for di in range(self.num_disp_points[0][si][mi][0]):
> -                    if self.missing[0][si][mi][0][di]:
> -                        self.back_calc[0][si][mi][0][di] = 
> self.values[0][si][mi][0][di]
> -
> -                # Calculate and return the chi-squared value.
> -                chi2_sum += chi2(self.values[0][si][mi][0], 
> self.back_calc[0][si][mi][0], self.errors[0][si][mi][0])
> +        # Convert dw from ppm to rad/s. Use the out argument, to pass 
> directly to structure.
> +        multiply( multiply.outer( dw.reshape(self.NE, self.NS), 
> self.nm_no_nd_struct ), self.frqs_struct, out=self.dw_struct )
> +
> +        # Reshape R20A and R20B to per experiment, spin and frequency.
> +        self.r20a_struct[:] = multiply.outer( R20A.reshape(self.NE, self.NS, 
> self.NM), self.no_nd_struct )
> +
> +        # Back calculate the R2eff values.
> +        r2eff_TSMFK01(r20a=self.r20a_struct, dw=self.dw_struct, dw_orig=dw, 
> k_AB=k_AB, tcp=self.tau_cpmg_a, back_calc=self.back_calc_a, 
> num_points=self.num_disp_points_a)
> +
> +        # Clean the data for all values, which is left over at the end of 
> arrays.
> +        self.back_calc_a = self.back_calc_a*self.disp_struct
> +
> +        ## For all missing data points, set the back-calculated value to the 
> measured values so that it has no effect on the chi-squared value.
> +        if self.has_missing:
> +            # Replace with values.
> +            self.back_calc_a[self.mask_replace_blank.mask] = 
> self.values_a[self.mask_replace_blank.mask]
>
>          # Return the total chi-squared value.
> -        return chi2_sum
> +        return chi2_rankN(self.values_a, self.back_calc_a, self.errors_a)
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to