Interesting!  If the magnetisation propagation can also be shifted out
of the loops, then the loops will disappear and the numeric models
will become far quicker.  With a matrix exponential, maybe this is
possible.  I'll think about this for a while.

Regards,

Edward


On 19 June 2014 20:52,  <[email protected]> wrote:
> Author: tlinnet
> Date: Thu Jun 19 20:52:57 2014
> New Revision: 24171
>
> URL: http://svn.gna.org/viewcvs/relax?rev=24171&view=rev
> Log:
> Moved the costly calculation of the matrix exponential out of for loops.
>
> It was the numpy.eig and numpy.inv which was draining power.
>
> This speeds up model NS R1rho 2site, by a factor 4X:
> BEFORE:
> Single:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000   32.552   32.552 <string>:1(<module>)
>         1    0.002    0.002   32.552   32.552 pf_nsr1rho2site:530(single)
> Cluster:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000   33.307   33.307 <string>:1(<module>)
>         1    0.008    0.008   33.307   33.307 pf_nsr1rho2site:554(cluster)
>
> AFTER:
> Single:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000    8.286    8.286 <string>:1(<module>)
>         1    0.002    0.002    8.286    8.286 pf_nsr1rho2site:530(single)
> Cluster:
>    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
>         1    0.000    0.000    8.223    8.223 <string>:1(<module>)
>         1    0.007    0.007    8.223    8.223 pf_nsr1rho2site:554(cluster)
>
> Task #7807 (https://gna.org/task/index.php?7807): Speed-up of dispersion 
> models for Clustered analysis.
>
> Modified:
>     branches/disp_spin_speed/lib/dispersion/ns_r1rho_2site.py
>
> Modified: branches/disp_spin_speed/lib/dispersion/ns_r1rho_2site.py
> URL: 
> http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/lib/dispersion/ns_r1rho_2site.py?rev=24171&r1=24170&r2=24171&view=diff
> ==============================================================================
> --- branches/disp_spin_speed/lib/dispersion/ns_r1rho_2site.py   (original)
> +++ branches/disp_spin_speed/lib/dispersion/ns_r1rho_2site.py   Thu Jun 19 
> 20:52:57 2014
> @@ -56,7 +56,7 @@
>  # relax module imports.
>  from lib.dispersion.ns_matrices import rr1rho_3d, rr1rho_3d_rankN
>  from lib.float import isNaN
> -from lib.linear_algebra.matrix_exponential import matrix_exponential
> +from lib.linear_algebra.matrix_exponential import matrix_exponential, 
> matrix_exponential_rankN
>
>
>  def ns_r1rho_2site(M0=None, matrix=None, r1rho_prime=None, omega=None, 
> offset=None, r1=0.0, pA=None, dw=None, kex=None, spin_lock_fields=None, 
> relax_time=None, inv_relax_time=None, back_calc=None, num_points=None):
> @@ -106,6 +106,9 @@
>      # The matrix that contains all the contributions to the evolution, i.e. 
> relaxation, exchange and chemical shift evolution.
>      R_mat = rr1rho_3d_rankN(R1=r1, r1rho_prime=r1rho_prime, pA=pA, pB=pB, 
> dw=dw, omega=omega, offset=offset, w1=spin_lock_fields, k_AB=k_AB, k_BA=k_BA, 
> relax_time=relax_time)
>
> +    # This matrix is a propagator that will evolve the magnetization with 
> the matrix R.
> +    Rexpo_mat = matrix_exponential_rankN(R_mat)
> +
>      # Loop over spins.
>      for si in range(NS):
>          # Loop over the spectrometer frequencies.
> @@ -135,19 +138,16 @@
>
>                  # Loop over the time points, back calculating the R2eff 
> values.
>                  for j in range(num_points_i):
> -                    # The matrix that contains all the contributions to the 
> evolution, i.e. relaxation, exchange and chemical shift evolution.
> -                    R_mat_i = R_mat[0, si, mi, oi, j]
> -
>                      # The following lines rotate the magnetization previous 
> to spin-lock into the weff frame.
>                      theta = atan2(spin_lock_fields_i[j], dA)
>                      M0[0] = sin(theta)    # The A state initial X 
> magnetisation.
>                      M0[2] = cos(theta)    # The A state initial Z 
> magnetisation.
>
>                      # This matrix is a propagator that will evolve the 
> magnetization with the matrix R.
> -                    Rexpo = matrix_exponential(R_mat_i)
> +                    Rexpo_i = Rexpo_mat[0, si, mi, oi, j]
>
>                      # Magnetization evolution.
> -                    MA = dot(M0, dot(Rexpo, M0))
> +                    MA = dot(M0, dot(Rexpo_i, M0))
>
>                      # The next lines calculate the R1rho using a two-point 
> approximation, i.e. assuming that the decay is mono-exponential.
>                      if MA <= 0.0 or isNaN(MA):
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to