Hi Troels,

Are all these R1-fitting R1rho models now tested in the test suite?

Cheers,

Edward



On 5 August 2014 20:47,  <[email protected]> wrote:
> Author: tlinnet
> Date: Tue Aug  5 20:47:24 2014
> New Revision: 24969
>
> URL: http://svn.gna.org/viewcvs/relax?rev=24969&view=rev
> Log:
> Split target function of model TAP03, into a calc and two func_TAP03* 
> variants.
>
> One target function will use measured R1 values, while one target function 
> will use the fitted R1 values.
>
> They will use the same calculation function.
>
> sr #3135(https://gna.org/support/?3135): Optimisation of the R1 relaxation 
> rate for the off-resonance R1rho relaxation dispersion models.
>
> Modified:
>     branches/R1_fitting/target_functions/relax_disp.py
>
> Modified: branches/R1_fitting/target_functions/relax_disp.py
> URL: 
> http://svn.gna.org/viewcvs/relax/branches/R1_fitting/target_functions/relax_disp.py?rev=24969&r1=24968&r2=24969&view=diff
> ==============================================================================
> --- branches/R1_fitting/target_functions/relax_disp.py  (original)
> +++ branches/R1_fitting/target_functions/relax_disp.py  Tue Aug  5 20:47:24 
> 2014
> @@ -55,7 +55,7 @@
>  from lib.errors import RelaxError
>  from lib.float import isNaN
>  from target_functions.chi2 import chi2_rankN
> -from specific_analyses.relax_disp.variables import EXP_TYPE_CPMG_DQ, 
> EXP_TYPE_CPMG_MQ, EXP_TYPE_CPMG_PROTON_MQ, EXP_TYPE_CPMG_PROTON_SQ, 
> EXP_TYPE_CPMG_SQ, EXP_TYPE_CPMG_ZQ, EXP_TYPE_LIST_CPMG, EXP_TYPE_R1RHO, 
> MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, MODEL_DPL94, 
> MODEL_DPL94_FIT_R1, MODEL_IT99, MODEL_LIST_CPMG, MODEL_LIST_FULL, 
> MODEL_LIST_MMQ, MODEL_LIST_MQ_CPMG, MODEL_LIST_NUMERIC, MODEL_LIST_R1RHO, 
> MODEL_LIST_R1RHO_FULL, MODEL_LIST_R1RHO_FIT_R1, MODEL_LIST_R1RHO_W_R1, 
> MODEL_LM63, MODEL_LM63_3SITE, MODEL_M61, MODEL_M61B, MODEL_MP05, 
> MODEL_MMQ_CR72, MODEL_NOREX, MODEL_NOREX_R1RHO, MODEL_NOREX_R1RHO_FIT_R1, 
> MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL, 
> MODEL_NS_CPMG_2SITE_EXPANDED, MODEL_NS_CPMG_2SITE_STAR, 
> MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_NS_MMQ_2SITE, MODEL_NS_MMQ_3SITE, 
> MODEL_NS_MMQ_3SITE_LINEAR, MODEL_NS_R1RHO_2SITE, MODEL_NS_R1RHO_3SITE, 
> MODEL_NS_R1RHO_3SITE_LINEAR, MODEL_PARAM_DW_MIX_DOUBLE, 
> MODEL_PARAM_DW_MIX_QUADRUPLE, MODEL_PARAM_INV_RELAX_TIMES, M
 ODEL_PARAM_R20B, MODEL_TAP03, MODEL_TP02, MODEL_TP02_FIT_R1, MODEL_TSMFK01
> +from specific_analyses.relax_disp.variables import EXP_TYPE_CPMG_DQ, 
> EXP_TYPE_CPMG_MQ, EXP_TYPE_CPMG_PROTON_MQ, EXP_TYPE_CPMG_PROTON_SQ, 
> EXP_TYPE_CPMG_SQ, EXP_TYPE_CPMG_ZQ, EXP_TYPE_LIST_CPMG, EXP_TYPE_R1RHO, 
> MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, MODEL_DPL94, 
> MODEL_DPL94_FIT_R1, MODEL_IT99, MODEL_LIST_CPMG, MODEL_LIST_FULL, 
> MODEL_LIST_MMQ, MODEL_LIST_MQ_CPMG, MODEL_LIST_NUMERIC, MODEL_LIST_R1RHO, 
> MODEL_LIST_R1RHO_FULL, MODEL_LIST_R1RHO_FIT_R1, MODEL_LIST_R1RHO_W_R1, 
> MODEL_LM63, MODEL_LM63_3SITE, MODEL_M61, MODEL_M61B, MODEL_MP05, 
> MODEL_MMQ_CR72, MODEL_NOREX, MODEL_NOREX_R1RHO, MODEL_NOREX_R1RHO_FIT_R1, 
> MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL, 
> MODEL_NS_CPMG_2SITE_EXPANDED, MODEL_NS_CPMG_2SITE_STAR, 
> MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_NS_MMQ_2SITE, MODEL_NS_MMQ_3SITE, 
> MODEL_NS_MMQ_3SITE_LINEAR, MODEL_NS_R1RHO_2SITE, MODEL_NS_R1RHO_3SITE, 
> MODEL_NS_R1RHO_3SITE_LINEAR, MODEL_PARAM_DW_MIX_DOUBLE, 
> MODEL_PARAM_DW_MIX_QUADRUPLE, MODEL_PARAM_INV_RELAX_TIMES, M
 ODEL_PARAM_R20B, MODEL_TAP03, MODEL_TAP03_FIT_R1, MODEL_TP02, 
MODEL_TP02_FIT_R1, MODEL_TSMFK01
>
>
>  class Dispersion:
> @@ -526,6 +526,8 @@
>              self.func = self.func_TP02_fit_r1
>          if model == MODEL_TAP03:
>              self.func = self.func_TAP03
> +        if model == MODEL_TAP03_FIT_R1:
> +            self.func = self.func_TAP03_fit_r1
>          if model == MODEL_MP05:
>              self.func = self.func_MP05
>          if model == MODEL_NS_R1RHO_2SITE:
> @@ -900,6 +902,44 @@
>          return chi2_rankN(self.values, self.back_calc, self.errors)
>
>
> +    def calc_TAP03(self, R1=None, r1rho_prime=None, dw=None, pA=None, 
> kex=None):
> +        """Calculation function for the Trott, Abergel and Palmer (2003) 
> R1rho off-resonance 2-site model.
> +
> +        @keyword R1:            The R1 value.
> +        @type R1:               list of float
> +        @keyword r1rho_prime:   The R1rho value for all states in the 
> absence of exchange.
> +        @type r1rho_prime:      list of float
> +        @keyword dw:            The chemical shift differences in ppm for 
> each spin.
> +        @type dw:               list of float
> +        @keyword pA:            The population of state A.
> +        @type pA:               float
> +        @keyword kex:           The rate of exchange.
> +        @type kex:              float
> +        @return:                The chi-squared value.
> +        @rtype:                 float
> +        """
> +
> +        # Reshape r1rho_prime to per experiment, spin and frequency.
> +        self.r1rho_prime_struct[:] = multiply.outer( 
> r1rho_prime.reshape(self.NE, self.NS, self.NM), self.no_nd_ones )
> +
> +        # Convert dw from ppm to rad/s. Use the out argument, to pass 
> directly to structure.
> +        multiply( multiply.outer( dw.reshape(1, self.NS), self.nm_no_nd_ones 
> ), self.frqs, out=self.dw_struct )
> +
> +        # Back calculate the R1rho values.
> +        r1rho_TAP03(r1rho_prime=self.r1rho_prime_struct, 
> omega=self.chemical_shifts, offset=self.offset, pA=pA, dw=self.dw_struct, 
> kex=kex, R1=R1, spin_lock_fields=self.spin_lock_omega1, 
> spin_lock_fields2=self.spin_lock_omega1_squared, back_calc=self.back_calc)
> +
> +        # Clean the data for all values, which is left over at the end of 
> arrays.
> +        self.back_calc = self.back_calc*self.disp_struct
> +
> +        # For all missing data points, set the back-calculated value to the 
> measured values so that it has no effect on the chi-squared value.
> +        if self.has_missing:
> +            # Replace with values.
> +            self.back_calc[self.mask_replace_blank.mask] = 
> self.values[self.mask_replace_blank.mask]
> +
> +        # Return the total chi-squared value.
> +        return chi2_rankN(self.values, self.back_calc, self.errors)
> +
> +
>      def calc_TP02(self, R1=None, r1rho_prime=None, dw=None, pA=None, 
> kex=None):
>          """Calculation function for the Trott and Palmer (2002) R1rho 
> off-resonance 2-site model.
>
> @@ -1879,30 +1919,40 @@
>              params = dot(params, self.scaling_matrix)
>
>          # Unpack the parameter values.
> -        R20 = params[:self.end_index[0]]
> +        r1rho_prime = params[:self.end_index[0]]
>          dw = params[self.end_index[0]:self.end_index[1]]
>          pA = params[self.end_index[1]]
>          kex = params[self.end_index[1]+1]
>
> -        # Convert dw from ppm to rad/s. Use the out argument, to pass 
> directly to structure.
> -        multiply( multiply.outer( dw.reshape(1, self.NS), self.nm_no_nd_ones 
> ), self.frqs, out=self.dw_struct )
> -
> -        # Reshape R20 to per experiment, spin and frequency.
> -        self.r20_struct[:] = multiply.outer( R20.reshape(self.NE, self.NS, 
> self.NM), self.no_nd_ones )
> -
> -        # Back calculate the R1rho values.
> -        r1rho_TAP03(r1rho_prime=self.r20_struct, omega=self.chemical_shifts, 
> offset=self.offset, pA=pA, dw=self.dw_struct, kex=kex, R1=self.r1, 
> spin_lock_fields=self.spin_lock_omega1, 
> spin_lock_fields2=self.spin_lock_omega1_squared, back_calc=self.back_calc)
> -
> -        # Clean the data for all values, which is left over at the end of 
> arrays.
> -        self.back_calc = self.back_calc*self.disp_struct
> -
> -        # For all missing data points, set the back-calculated value to the 
> measured values so that it has no effect on the chi-squared value.
> -        if self.has_missing:
> -            # Replace with values.
> -            self.back_calc[self.mask_replace_blank.mask] = 
> self.values[self.mask_replace_blank.mask]
> -
> -        # Return the total chi-squared value.
> -        return chi2_rankN(self.values, self.back_calc, self.errors)
> +        # Calculate and return the chi-squared value.
> +        return self.calc_TAP03(R1=self.r1, r1rho_prime=r1rho_prime, dw=dw, 
> pA=pA, kex=kex)
> +
> +
> +    def func_TAP03_fit_r1(self, params):
> +        """Target function for the Trott, Abergel and Palmer (2003) R1rho 
> off-resonance 2-site model, where R1 is fitted.
> +
> +        @param params:  The vector of parameter values.
> +        @type params:   numpy rank-1 float array
> +        @return:        The chi-squared value.
> +        @rtype:         float
> +        """
> +
> +        # Scaling.
> +        if self.scaling_flag:
> +            params = dot(params, self.scaling_matrix)
> +
> +        # Unpack the parameter values.
> +        r1 = params[:self.end_index[0]]
> +        r1rho_prime = params[self.end_index[0]:self.end_index[1]]
> +        dw = params[self.end_index[1]:self.end_index[2]]
> +        pA = params[self.end_index[2]]
> +        kex = params[self.end_index[2]+1]
> +
> +        # Reshape R1 to per experiment, spin and frequency.
> +        self.r1_struct[:] = multiply.outer( r1.reshape(self.NE, self.NS, 
> self.NM), self.no_nd_ones )
> +
> +        # Calculate and return the chi-squared value.
> +        return self.calc_TAP03(R1=self.r1_struct, r1rho_prime=r1rho_prime, 
> dw=dw, pA=pA, kex=kex)
>
>
>      def func_TP02(self, params):
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to