Hi Edward.

The error for r2eff seems twice as high, while i0_err are almost identical.

Best
Troels

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 431.0.
r2eff=8.646/8.646 r2eff_err=0.0348/0.0692 i0=202664.191/202664.191
i0_err=699.6443/712.4201

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 651.2.
r2eff=10.377/10.377 r2eff_err=0.0403/0.0810 i0=206049.558/206049.558
i0_err=776.4215/782.1833

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 800.5.
r2eff=10.506/10.506 r2eff_err=0.0440/0.0853 i0=202586.332/202586.332
i0_err=763.9678/758.7052

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 984.0.
r2eff=10.903/10.903 r2eff_err=0.0476/0.0922 i0=203455.021/203455.021
i0_err=837.8779/828.7280

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1341.1.
r2eff=10.684/10.684 r2eff_err=0.0446/0.0853 i0=218670.412/218670.412
i0_err=850.0210/830.9558

R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1648.5.
r2eff=10.501/10.501 r2eff_err=0.0371/0.0742 i0=206502.512/206502.512
i0_err=794.0523/772.9843

R1rho at 799.8 MHz, for offset=124.247 ppm and dispersion point 1341.1.
r2eff=11.118/11.118 r2eff_err=0.0413/0.0827 i0=216447.241/216447.241
i0_err=784.6562/788.0384

R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 800.5.
r2eff=7.866/7.866 r2eff_err=0.0347/0.0695 i0=211869.715/211869.715
i0_err=749.2776/763.6930

R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1341.1.
r2eff=9.259/9.259 r2eff_err=0.0331/0.0661 i0=217703.151/217703.151
i0_err=682.2137/685.5838

R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1648.5.
r2eff=9.565/9.565 r2eff_err=0.0373/0.0745 i0=211988.939/211988.939
i0_err=839.0313/827.0373

R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 800.5.
r2eff=3.240/3.240 r2eff_err=0.0127/0.0253 i0=214417.382/214417.382
i0_err=595.8865/613.4378

R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 1341.1.
r2eff=5.084/5.084 r2eff_err=0.0177/0.0352 i0=226358.691/226358.691
i0_err=660.5314/655.7670

R1rho at 799.8 MHz, for offset=179.768 ppm and dispersion point 1341.1.
r2eff=2.208/2.208 r2eff_err=0.0091/0.0178 i0=228620.553/228620.553
i0_err=564.8353/560.0873

R1rho at 799.8 MHz, for offset=241.459 ppm and dispersion point 1341.1.
r2eff=1.711/1.711 r2eff_err=0.0077/0.0155 i0=224087.486/224087.486
i0_err=539.4300/546.4217

2014-08-25 16:35 GMT+02:00 Edward d'Auvergne <[email protected]>:
> Hi,
>
> The errors from the covariance matrix estimate, via
> scipy.optimize.leastsq() should be similar or even identical to the
> Monte Carlo simulation errors, not double.  Is this still the case?
>
> Regards,
>
> Edward
>
> On 25 August 2014 01:32,  <[email protected]> wrote:
>> Author: tlinnet
>> Date: Mon Aug 25 01:32:13 2014
>> New Revision: 25238
>>
>> URL: http://svn.gna.org/viewcvs/relax?rev=25238&view=rev
>> Log:
>> Modified systemtest Relax_disp.test_estimate_r2eff.
>>
>> This is to compare against errors simulated with 2000 MC.
>>
>> The paramaters are comparable, but not equal.
>> Mostly, it seems that the errors from scipy.optimize.leastsq, are twice as 
>> high than the Monte Carlo simulations.
>> This affect model fitting, and the calculated chi2 value.
>>
>> Left column is 2000 Monte Carlo, right column is scipy.optimize.leastsq.
>>
>> Optimised parameters for spin: 52V @N
>> Model: No Rex
>> Parameter: r1     Value: 1.46138806 - 1.46328102
>> Parameter: r2     Value: 11.48392438 - 11.48040934
>> Parameter: chi2   Value: 848.42015672 - 3363.95829122
>>
>> Model: DPL94
>> Parameter: r1     Value: 1.44845743 - 1.45019848
>> Parameter: r2     Value: 10.15688373 - 10.16304892
>> Parameter: phi_ex Value: 0.07599563 - 0.07561937
>> Parameter: kex    Value: 4460.43707304 - 4419.03906628
>> Parameter: chi2   Value: 179.47041255 - 710.24767560
>>
>> Model: TP02
>> Parameter: r1     Value: 1.54354392 - 1.54352369
>> Parameter: r2     Value: 9.72654895 - 9.72772727
>> Parameter: pA     Value: 0.88827039 - 0.88807488
>> Parameter: dw     Value: 1.08875836 - 1.08765645
>> Parameter: kex    Value: 4921.28597928 - 4904.70134941
>> Parameter: chi2   Value: 29.33882481 - 114.47142772
>>
>> Model: TAP03
>> Parameter: r1     Value: 1.54356410 - 1.54354368
>> Parameter: r2     Value: 9.72641885 - 9.72759371
>> Parameter: pA     Value: 0.88828925 - 0.88809317
>> Parameter: dw     Value: 1.08837248 - 1.08726695
>> Parameter: kex    Value: 4926.42974479 - 4909.86896567
>> Parameter: chi2   Value: 29.29050624 - 114.27987534
>>
>> Model: MP05
>> Parameter: r1     Value: 1.54356415 - 1.54354372
>> Parameter: r2     Value: 9.72641730 - 9.72759220
>> Parameter: pA     Value: 0.88828927 - 0.88809322
>> Parameter: dw     Value: 1.08837250 - 1.08726707
>> Parameter: kex    Value: 4926.44228958 - 4909.88128236
>> Parameter: chi2   Value: 29.29054252 - 114.28002272
>>
>> Model: NS R1rho 2-site
>> Parameter: r1     Value: 1.41359226 - 1.41321968
>> Parameter: r2     Value: 9.34531364 - 9.34602793
>> Parameter: pA     Value: 0.94504369 - 0.94496541
>> Parameter: dw     Value: 1.56001843 - 1.55833321
>> Parameter: kex    Value: 5628.66529504 - 5610.20221435
>> Parameter: chi2   Value: 34.44010458 - 134.14368365
>>
>> task #7822(https://gna.org/task/index.php?7822): Implement user function to 
>> estimate R2eff and associated errors for exponential curve fitting.
>>
>> Modified:
>>     trunk/test_suite/system_tests/relax_disp.py
>>
>> Modified: trunk/test_suite/system_tests/relax_disp.py
>> URL: 
>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25238&r1=25237&r2=25238&view=diff
>> ==============================================================================
>> --- trunk/test_suite/system_tests/relax_disp.py (original)
>> +++ trunk/test_suite/system_tests/relax_disp.py Mon Aug 25 01:32:13 2014
>> @@ -2679,7 +2679,7 @@
>>          self.setup_r1rho_kjaergaard(cluster_ids=cluster_ids, read_R1=False)
>>
>>          # The dispersion models.
>> -        MODELS = [MODEL_NOREX, MODEL_DPL94]
>> +        MODELS = [MODEL_NOREX, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, 
>> MODEL_MP05, MODEL_NS_R1RHO_2SITE]
>>
>>          # The grid search size (the number of increments per dimension).
>>          GRID_INC = None
>> @@ -2723,6 +2723,9 @@
>>
>>          # Run the analysis.
>>          relax_disp.Relax_disp(pipe_name=ds.pipe_name, 
>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, 
>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL)
>> +
>> +        # Verify the data.
>> +        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>> result_dir_name=result_dir_name, do_assert=False)
>>
>>
>>      def test_exp_fit(self):
>> @@ -7343,7 +7346,7 @@
>>          w_eff_file.close()
>>
>>
>> -    def verify_r1rho_kjaergaard_missing_r1(self, models=None, 
>> result_dir_name=None):
>> +    def verify_r1rho_kjaergaard_missing_r1(self, models=None, 
>> result_dir_name=None, do_assert=True):
>>          """Verification of test_r1rho_kjaergaard_missing_r1."""
>>
>>          # Check the kex value of residue 52
>> @@ -7382,35 +7385,36 @@
>>                              # Print value.
>>                              print("%-10s %-6s %-6s %3.8f" % ("Parameter:", 
>> param, "Value:", value))
>>
>> -                            # Compare values.
>> -                            if spin_id == ':52@N':
>> -                                if param == 'r1':
>> -                                    if model == MODEL_NOREX:
>> -                                        self.assertAlmostEqual(value, 
>> 1.46328102)
>> -                                    elif model == MODEL_DPL94:
>> -                                        self.assertAlmostEqual(value, 
>> 1.45019848)
>> -                                    elif model == MODEL_TP02:
>> -                                        self.assertAlmostEqual(value, 
>> 1.54352369)
>> -                                    elif model == MODEL_TAP03:
>> -                                        self.assertAlmostEqual(value, 
>> 1.54354367)
>> -                                    elif model == MODEL_MP05:
>> -                                        self.assertAlmostEqual(value, 
>> 1.54354372)
>> -                                    elif model == MODEL_NS_R1RHO_2SITE:
>> -                                        self.assertAlmostEqual(value, 
>> 1.41321968, 6)
>> -
>> -                                elif param == 'r2':
>> -                                    if model == MODEL_NOREX:
>> -                                        self.assertAlmostEqual(value, 
>> 11.48040934)
>> -                                    elif model == MODEL_DPL94:
>> -                                        self.assertAlmostEqual(value, 
>> 10.16304887, 6)
>> -                                    elif model == MODEL_TP02:
>> -                                        self.assertAlmostEqual(value, 
>> 9.72772726, 6)
>> -                                    elif model == MODEL_TAP03:
>> -                                        self.assertAlmostEqual(value, 
>> 9.72759374, 6)
>> -                                    elif model == MODEL_MP05:
>> -                                        self.assertAlmostEqual(value, 
>> 9.72759220, 6)
>> -                                    elif model == MODEL_NS_R1RHO_2SITE:
>> -                                        self.assertAlmostEqual(value, 
>> 9.34602793, 5)
>> +                            if do_assert:
>> +                                # Compare values.
>> +                                if spin_id == ':52@N':
>> +                                    if param == 'r1':
>> +                                        if model == MODEL_NOREX:
>> +                                            self.assertAlmostEqual(value, 
>> 1.46328102)
>> +                                        elif model == MODEL_DPL94:
>> +                                            self.assertAlmostEqual(value, 
>> 1.45019848)
>> +                                        elif model == MODEL_TP02:
>> +                                            self.assertAlmostEqual(value, 
>> 1.54352369)
>> +                                        elif model == MODEL_TAP03:
>> +                                            self.assertAlmostEqual(value, 
>> 1.54354367)
>> +                                        elif model == MODEL_MP05:
>> +                                            self.assertAlmostEqual(value, 
>> 1.54354372)
>> +                                        elif model == MODEL_NS_R1RHO_2SITE:
>> +                                            self.assertAlmostEqual(value, 
>> 1.41321968, 6)
>> +
>> +                                    elif param == 'r2':
>> +                                        if model == MODEL_NOREX:
>> +                                            self.assertAlmostEqual(value, 
>> 11.48040934)
>> +                                        elif model == MODEL_DPL94:
>> +                                            self.assertAlmostEqual(value, 
>> 10.16304887, 6)
>> +                                        elif model == MODEL_TP02:
>> +                                            self.assertAlmostEqual(value, 
>> 9.72772726, 6)
>> +                                        elif model == MODEL_TAP03:
>> +                                            self.assertAlmostEqual(value, 
>> 9.72759374, 6)
>> +                                        elif model == MODEL_MP05:
>> +                                            self.assertAlmostEqual(value, 
>> 9.72759220, 6)
>> +                                        elif model == MODEL_NS_R1RHO_2SITE:
>> +                                            self.assertAlmostEqual(value, 
>> 9.34602793, 5)
>>
>>                      # For all other parameters.
>>                      else:
>> @@ -7420,57 +7424,58 @@
>>                          # Print value.
>>                          print("%-10s %-6s %-6s %3.8f" % ("Parameter:", 
>> param, "Value:", value))
>>
>> -                        # Compare values.
>> -                        if spin_id == ':52@N':
>> -                            if param == 'phi_ex':
>> -                                if model == MODEL_DPL94:
>> -                                    self.assertAlmostEqual(value, 
>> 0.07561937)
>> -
>> -                            elif param == 'pA':
>> -                                if model == MODEL_TP02:
>> -                                    self.assertAlmostEqual(value, 
>> 0.88807487)
>> -                                elif model == MODEL_TAP03:
>> -                                    self.assertAlmostEqual(value, 
>> 0.88809318)
>> -                                elif model == MODEL_MP05:
>> -                                    self.assertAlmostEqual(value, 
>> 0.88809321)
>> -                                elif model == MODEL_NS_R1RHO_2SITE:
>> -                                    self.assertAlmostEqual(value, 
>> 0.94496541, 6)
>> -
>> -                            elif param == 'dw':
>> -                                if model == MODEL_TP02:
>> -                                    self.assertAlmostEqual(value, 
>> 1.08765638, 6)
>> -                                elif model == MODEL_TAP03:
>> -                                    self.assertAlmostEqual(value, 
>> 1.08726698, 6)
>> -                                elif model == MODEL_MP05:
>> -                                    self.assertAlmostEqual(value, 
>> 1.08726706, 6)
>> -                                elif model == MODEL_NS_R1RHO_2SITE:
>> -                                    self.assertAlmostEqual(value, 
>> 1.55833321, 5)
>> -
>> -                            elif param == 'kex':
>> -                                if model == MODEL_DPL94:
>> -                                    self.assertAlmostEqual(value, 
>> 4419.03917195, 2)
>> -                                elif model == MODEL_TP02:
>> -                                    self.assertAlmostEqual(value, 
>> 4904.70144883, 3)
>> -                                elif model == MODEL_TAP03:
>> -                                    self.assertAlmostEqual(value, 
>> 4909.86877150, 3)
>> -                                elif model == MODEL_MP05:
>> -                                    self.assertAlmostEqual(value, 
>> 4909.88110195, 3)
>> -                                elif model == MODEL_NS_R1RHO_2SITE:
>> -                                    self.assertAlmostEqual(value, 
>> 5610.20221435, 2)
>> -
>> -                            elif param == 'chi2':
>> -                                if model == MODEL_NOREX:
>> -                                    self.assertAlmostEqual(value, 
>> 3363.95829122)
>> -                                elif model == MODEL_DPL94:
>> -                                    self.assertAlmostEqual(value, 
>> 710.24767560)
>> -                                elif model == MODEL_TP02:
>> -                                    self.assertAlmostEqual(value, 
>> 114.47142772)
>> -                                elif model == MODEL_TAP03:
>> -                                    self.assertAlmostEqual(value, 
>> 114.27987534)
>> -                                elif model == MODEL_MP05:
>> -                                    self.assertAlmostEqual(value, 
>> 114.28002272)
>> -                                elif model == MODEL_NS_R1RHO_2SITE:
>> -                                    self.assertAlmostEqual(value, 
>> 134.14368365)
>> +                        if do_assert:
>> +                            # Compare values.
>> +                            if spin_id == ':52@N':
>> +                                if param == 'phi_ex':
>> +                                    if model == MODEL_DPL94:
>> +                                        self.assertAlmostEqual(value, 
>> 0.07561937)
>> +
>> +                                elif param == 'pA':
>> +                                    if model == MODEL_TP02:
>> +                                        self.assertAlmostEqual(value, 
>> 0.88807487)
>> +                                    elif model == MODEL_TAP03:
>> +                                        self.assertAlmostEqual(value, 
>> 0.88809318)
>> +                                    elif model == MODEL_MP05:
>> +                                        self.assertAlmostEqual(value, 
>> 0.88809321)
>> +                                    elif model == MODEL_NS_R1RHO_2SITE:
>> +                                        self.assertAlmostEqual(value, 
>> 0.94496541, 6)
>> +
>> +                                elif param == 'dw':
>> +                                    if model == MODEL_TP02:
>> +                                        self.assertAlmostEqual(value, 
>> 1.08765638, 6)
>> +                                    elif model == MODEL_TAP03:
>> +                                        self.assertAlmostEqual(value, 
>> 1.08726698, 6)
>> +                                    elif model == MODEL_MP05:
>> +                                        self.assertAlmostEqual(value, 
>> 1.08726706, 6)
>> +                                    elif model == MODEL_NS_R1RHO_2SITE:
>> +                                        self.assertAlmostEqual(value, 
>> 1.55833321, 5)
>> +
>> +                                elif param == 'kex':
>> +                                    if model == MODEL_DPL94:
>> +                                        self.assertAlmostEqual(value, 
>> 4419.03917195, 2)
>> +                                    elif model == MODEL_TP02:
>> +                                        self.assertAlmostEqual(value, 
>> 4904.70144883, 3)
>> +                                    elif model == MODEL_TAP03:
>> +                                        self.assertAlmostEqual(value, 
>> 4909.86877150, 3)
>> +                                    elif model == MODEL_MP05:
>> +                                        self.assertAlmostEqual(value, 
>> 4909.88110195, 3)
>> +                                    elif model == MODEL_NS_R1RHO_2SITE:
>> +                                        self.assertAlmostEqual(value, 
>> 5610.20221435, 2)
>> +
>> +                                elif param == 'chi2':
>> +                                    if model == MODEL_NOREX:
>> +                                        self.assertAlmostEqual(value, 
>> 3363.95829122)
>> +                                    elif model == MODEL_DPL94:
>> +                                        self.assertAlmostEqual(value, 
>> 710.24767560)
>> +                                    elif model == MODEL_TP02:
>> +                                        self.assertAlmostEqual(value, 
>> 114.47142772)
>> +                                    elif model == MODEL_TAP03:
>> +                                        self.assertAlmostEqual(value, 
>> 114.27987534)
>> +                                    elif model == MODEL_MP05:
>> +                                        self.assertAlmostEqual(value, 
>> 114.28002272)
>> +                                    elif model == MODEL_NS_R1RHO_2SITE:
>> +                                        self.assertAlmostEqual(value, 
>> 134.14368365)
>>
>>
>>          # Print the final pipe.
>> @@ -7524,7 +7529,7 @@
>>
>>                  # Assign the split of the line.
>>                  mol_name, res_num, res_name, spin_num, spin_name, val, 
>> sd_error = line_split
>> -                print mol_name, res_num, res_name, spin_num, spin_name, 
>> val, sd_error
>> +                print(mol_name, res_num, res_name, spin_num, spin_name, 
>> val, sd_error)
>>
>>                  if res_num == '52':
>>                      # Assert that the value is not None.
>>
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-commits mailing list
>> [email protected]
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-commits
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-devel mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to