I get this when I try to compile:

gcc -o target_functions/c_chi2.os -c
-I/sbinlab2/software/python-
enthought-dis/canopy-1.4.0-full-rh5-64/Canopy_64bit/User/include/python2.7
-fPIC target_functions/c_chi2.c
gcc -o target_functions/exponential.os -c
-I/sbinlab2/software/python-enthought-dis/canopy-1.4.0-full-rh5-64/Canopy_64bit/User/include/python2.7
-fPIC target_functions/exponential.c
gcc -o target_functions/relax_fit.os -c
-I/sbinlab2/software/python-enthought-dis/canopy-1.4.0-full-rh5-64/Canopy_64bit/User/include/python2.7
-fPIC target_functions/relax_fit.c
target_functions/relax_fit.c:21:20: error: Python.h: No such file or directory
target_functions/relax_fit.c:31: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:80: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:118: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:168: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:179: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:196: error: expected '=', ',', ';', 'asm'
or '__attribute__' before '*' token
target_functions/relax_fit.c:244: error: expected '=', ',', ';', 'asm'
or '__attribute__' before 'relax_fit_methods'
target_functions/relax_fit.c: In function 'initrelax_fit':
target_functions/relax_fit.c:305: error: 'relax_fit_methods'
undeclared (first use in this function)
target_functions/relax_fit.c:305: error: (Each undeclared identifier
is reported only once
target_functions/relax_fit.c:305: error: for each function it appears in.)
scons: *** [target_functions/relax_fit.os] Error 1
scons: building terminated because of errors.

2014-08-26 13:30 GMT+02:00 Edward d'Auvergne <[email protected]>:
> The minfx equivalent algorithms as scipy.optimize.fmin_cg() and
> scipy.optimize.fmin_ncg(), as well as the other scipy.optimize
> functions are now working with the exponential curve-fitting in relax
> as the gradient is now implemented.  None of the Scipy algorithms
> require the Hessian.  They really need to implement the Newton
> optimisation technique to be taken seriously.  This is quite different
> to NCG:
>
> http://home.gna.org/minfx/minfx.ncg-module.html
> http://home.gna.org/minfx/minfx.newton-module.html
>
> Regards,
>
> Edward
>
>
> On 26 August 2014 13:23,  <[email protected]> wrote:
>> Author: tlinnet
>> Date: Tue Aug 26 13:23:47 2014
>> New Revision: 25287
>>
>> URL: http://svn.gna.org/viewcvs/relax?rev=25287&view=rev
>> Log:
>> Removed all code regarding scipy.optimize fmin_cg and fmin_ncg.
>>
>> This problem should soon be able to be solved with minfx.
>>
>> task #7822(https://gna.org/task/index.php?7822): Implement user function to 
>> estimate R2eff and associated errors for exponential curve fitting.
>>
>> Modified:
>>     trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>
>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py
>> URL: 
>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25287&r1=25286&r2=25287&view=diff
>> ==============================================================================
>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py        (original)
>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py        Tue Aug 26 
>> 13:23:47 2014
>> @@ -45,7 +45,7 @@
>>  # Scipy installed.
>>  if scipy_module:
>>      # Import leastsq.
>> -    from scipy.optimize import fmin_cg, fmin_ncg, leastsq
>> +    from scipy.optimize import leastsq
>>
>>
>>  class Exp:
>> @@ -424,7 +424,6 @@
>>
>>  # 'minfx'
>>  # 'scipy.optimize.leastsq'
>> -# 'scipy.optimize.fmin_cg'
>>  def estimate_r2eff(spin_id=None, ftol=1e-15, xtol=1e-15, maxfev=10000000, 
>> factor=100.0, method='minfx', verbosity=1):
>>      """Estimate r2eff and errors by exponential curve fitting with 
>> scipy.optimize.leastsq.
>>
>> @@ -540,10 +539,6 @@
>>                  # Acquire results.
>>                  results = minimise_leastsq(E=E)
>>
>> -            elif method == 'scipy.optimize.fmin_cg':
>> -                # Acquire results.
>> -                results = minimise_fmin_cg(E=E)
>> -
>>              elif method == 'minfx':
>>                  # Acquire results.
>>                  results = minimise_minfx(E=E)
>> @@ -715,46 +710,6 @@
>>      return results
>>
>>
>> -def minimise_fmin_cg(E=None):
>> -    """Estimate r2eff and errors by exponential curve fitting with 
>> scipy.optimize.fmin_cg.
>> -
>> -    Unconstrained minimization of a function using the Newton-CG method.
>> -
>> -    @keyword E:     The Exponential function class, which contain data and 
>> functions.
>> -    @type E:        class
>> -    @return:        Packed list with optimised parameter, estimated 
>> parameter error, chi2, iter_count, f_count, g_count, h_count, warning
>> -    @rtype:         list
>> -    """
>> -
>> -    # Check that scipy.optimize.leastsq is available.
>> -    if not scipy_module:
>> -        raise RelaxError("scipy module is not available.")
>> -
>> -    # Initial guess for minimisation. Solved by linear least squares.
>> -    x0 = E.estimate_x0_exp()
>> -
>> -    # Define function to minimise. Use errors as weights in the 
>> minimisation.
>> -    use_weights = True
>> -
>> -    if use_weights:
>> -        func = E.func_exp_weighted_general
>> -        dfunc = E.func_exp_weighted_grad
>> -        d2func = E.func_exp_weighted_hess
>> -
>> -    # There are no args to the function, since values and times are stored 
>> in the class.
>> -    args=()
>> -
>> -    gfk = dfunc(x0)
>> -    deltak = numpy.dot(gfk, gfk)
>> -
>> -    # Cannot get this to work.
>> -
>> -    #xopt, fopt, fcalls, gcalls, hcalls, warnflag = fmin_ncg(f=func, x0=x0, 
>> fprime=dfunc, fhess=None, args=args, avextol=1e-05, 
>> epsilon=1.4901161193847656e-08, maxiter=maxfev, full_output=1, disp=1, 
>> retall=0, callback=None)
>> -    #test = fmin_ncg(f=func, x0=x0, fprime=dfunc, fhess=d2func, args=args, 
>> avextol=1e-05, epsilon=1.4901161193847656e-08, maxiter=maxfev)
>> -    #fmin_cg(f, x0, fprime=None, args=(), gtol=1e-5, norm=Inf, 
>> epsilon=_epsilon, maxiter=None, full_output=0, disp=1, retall=0, 
>> callback=None):
>> -    #fmin_cg(f=func, x0=x0, fprime=dfunc, args=args, gtol=1e-5)
>> -
>> -
>>  def minimise_minfx(E=None):
>>      """Estimate r2eff and errors by minimising with minfx.
>>
>>
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-commits mailing list
>> [email protected]
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-commits
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-devel mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to