Could you create a simple relax script and log file in the test suite
directories with the results of a super-massive Monte Carlo simulation
run?  I.e. a really insane number of Monte Carlo simulations and then
a clear print out of both the R2eff and I0 errors.  I really cannot
follow the numbers in these tests.  There are too many points where
bugs could be hidden.  It would be good to also have a simple relax
script and log file for the covariance matrix estimate as well.

Cheers,

Edward

On 29 August 2014 11:59, Troels Emtekær Linnet <[email protected]> wrote:
> You may want to look here:
>
> relax -s Relax_disp.test_estimate_r2eff_err_methods -d
>
> 2014-08-29 11:57 GMT+02:00 Troels Emtekær Linnet <[email protected]>:
>> Hi Edward.
>>
>> There is something totally wrong with the C, Jacobian.
>> Errors are estimated to:
>>
>> 37.619 17.290 25.616 16.036 16.164 32.826 22.920 21.462 7.777 145.309
>> 36.884 9.116 6.199 7.018 sum= 402.235
>>
>> Which is much different to:
>> 0.041 0.040 0.040 0.054 0.041 0.044 0.042 0.037 0.034 0.043 0.013
>> 0.018 0.007 0.010 sum= 0.462
>>
>> You can see how the error estimation develops in:
>> verify_estimate_r2eff_err_compare_mc
>>
>> You will see, that just 50 monte carlo simulations is better than estimating.
>>
>> Best
>> Troels
>>
>>
>> 2014-08-29 11:51 GMT+02:00 Edward d'Auvergne <[email protected]>:
>>> Hi,
>>>
>>> I saw the results from that 'hidden' system test and was wondering
>>> what was happening?  The Jacobian of the chi-squared function should
>>> remove the factor of 2, as it has a factor of minus two.  But it also
>>> includes the difference between the measured and back-calculated peak
>>> intensities divided by the variance as well.  So why does this
>>> Jacobian, which is much closer to the 2000 MC simulations, not work?
>>> I cannot understand this as it is totally illogical.  If your error
>>> estimate is closer to the real thing, then you should get closer to
>>> the real optimisation results.
>>>
>>> Do you have a log file somewhere which contains the results from the
>>> 2000 MC simulations?  It might be worth creating a file which compares
>>> this, or even more simulations, 100,000 for example, to the covariance
>>> technique.  Once the error estimate technique is functional and
>>> debugged, then we can work out why the models are optimisating
>>> differently.  These two problems need to be separated and solved
>>> independently, otherwise you can encounter the common yet fatal coding
>>> problem of two opposing bugs partially cancelling out their effects.
>>>
>>> Regards,
>>>
>>> Edward
>>>
>>> On 29 August 2014 11:01, Troels Emtekær Linnet <[email protected]> 
>>> wrote:
>>>> Hi Edward.
>>>>
>>>> Would it be possible to have both?
>>>>
>>>> The exponential Jacobian, and the chi2 Jacobian.
>>>>
>>>> My tests last night showed something weird.
>>>>
>>>> Using the chi2 Jacobian, the errors come closer to the ones reported
>>>> my MC calculations.
>>>> The direct jacobian would have double error on R2eff.
>>>>
>>>> But when fitting for R1rho models, using the errors from the direct
>>>> jacobian, was much better in agreement with
>>>> MC error fitting.
>>>>
>>>> The parameters from chi2 Jacobian, was worse.
>>>>
>>>> See verify_r1rho_kjaergaard_missing_r1() in systemtest for comparison.
>>>>
>>>> Look at the 'kex' parameter!
>>>>
>>>> # Compare values.
>>>> if spin_id == ':52@N':
>>>>     if param == 'r1':
>>>>         if model == MODEL_NOREX:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.46138805)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.46328102)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.43820629)
>>>>         elif model == MODEL_DPL94:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.44845742)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.45019848)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.44666512)
>>>>         elif model == MODEL_TP02:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.54354392)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.54352369)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.55964020)
>>>>         elif model == MODEL_TAP03:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.54356410)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.54354367)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.55967157)
>>>>         elif model == MODEL_MP05:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.54356416)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.54354372)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.55967163)
>>>>         elif model == MODEL_NS_R1RHO_2SITE:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 1.41359221, 5)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 1.41321968, 5)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 1.36303129, 5)
>>>>
>>>>     elif param == 'r2':
>>>>         if model == MODEL_NOREX:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 11.48392439)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 11.48040934)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 11.47224488)
>>>>         elif model == MODEL_DPL94:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 10.15688372, 6)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 10.16304887, 6)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 9.20037797, 6)
>>>>         elif model == MODEL_TP02:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 9.72654896, 6)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 9.72772726, 6)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 9.53948340, 6)
>>>>         elif model == MODEL_TAP03:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 9.72641887, 6)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 9.72759374, 6)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 9.53926913, 6)
>>>>         elif model == MODEL_MP05:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 9.72641723, 6)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 9.72759220, 6)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 9.53926778, 6)
>>>>         elif model == MODEL_NS_R1RHO_2SITE:
>>>>             if r2eff_estimate == 'direct':
>>>>                 self.assertAlmostEqual(value, 9.34531535, 5)
>>>>             elif r2eff_estimate == 'MC2000':
>>>>                 self.assertAlmostEqual(value, 9.34602793, 5)
>>>>             elif r2eff_estimate == 'chi2':
>>>>                 self.assertAlmostEqual(value, 9.17631409, 5)
>>>>
>>>> # For all other parameters.
>>>> else:
>>>> # Get the value.
>>>> value = getattr(cur_spin, param)
>>>>
>>>> # Print value.
>>>> print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value))
>>>>
>>>> # Compare values.
>>>> if spin_id == ':52@N':
>>>> if param == 'phi_ex':
>>>>     if model == MODEL_DPL94:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 0.07599563)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 0.07561937)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 0.12946061)
>>>>
>>>> elif param == 'pA':
>>>>     if model == MODEL_TP02:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 0.88827040)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 0.88807487)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 0.87746233)
>>>>     elif model == MODEL_TAP03:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 0.88828922)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 0.88809318)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 0.87747558)
>>>>     elif model == MODEL_MP05:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 0.88828924)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 0.88809321)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 0.87747562)
>>>>     elif model == MODEL_NS_R1RHO_2SITE:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 0.94504369, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 0.94496541, 6)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 0.92084707, 6)
>>>>
>>>> elif param == 'dw':
>>>>     if model == MODEL_TP02:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 1.08875840, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 1.08765638, 6)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 1.09753230, 6)
>>>>     elif model == MODEL_TAP03:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 1.08837238, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 1.08726698, 6)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 1.09708821, 6)
>>>>     elif model == MODEL_MP05:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 1.08837241, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 1.08726706, 6)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 1.09708832, 6)
>>>>     elif model == MODEL_NS_R1RHO_2SITE:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 1.56001812, 5)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 1.55833321, 5)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 1.36406712, 5)
>>>>
>>>> elif param == 'kex':
>>>>     if model == MODEL_DPL94:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 4460.43711569, 2)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 4419.03917195, 2)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 6790.22736344, 2)
>>>>     elif model == MODEL_TP02:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 4921.28602757, 3)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 4904.70144883, 3)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 5146.20306591, 3)
>>>>     elif model == MODEL_TAP03:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 4926.42963491, 3)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 4909.86877150, 3)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 5152.51105814, 3)
>>>>     elif model == MODEL_MP05:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 4926.44236315, 3)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 4909.88110195, 3)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 5152.52097111, 3)
>>>>     elif model == MODEL_NS_R1RHO_2SITE:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 5628.66061488, 2)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 5610.20221435, 2)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 5643.34067090, 2)
>>>>
>>>> elif param == 'chi2':
>>>>     if model == MODEL_NOREX:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 848.42016907, 5)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 3363.95829122, 5)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 5976.49946726, 5)
>>>>     elif model == MODEL_DPL94:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 179.47041241)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 710.24767560)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 612.72616697, 5)
>>>>     elif model == MODEL_TP02:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 29.33882530, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 114.47142772, 6)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 250.50838162, 5)
>>>>     elif model == MODEL_TAP03:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 29.29050673, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 114.27987534)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 250.04050719, 5)
>>>>     elif model == MODEL_MP05:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 29.29054301, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 114.28002272)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 250.04077478, 5)
>>>>     elif model == MODEL_NS_R1RHO_2SITE:
>>>>         if r2eff_estimate == 'direct':
>>>>             self.assertAlmostEqual(value, 34.44010543, 6)
>>>>         elif r2eff_estimate == 'MC2000':
>>>>             self.assertAlmostEqual(value, 134.14368365)
>>>>         elif r2eff_estimate == 'chi2':
>>>>             self.assertAlmostEqual(value, 278.55121388, 5)
>>>>
>>>> 2014-08-29 9:49 GMT+02:00 Edward d'Auvergne <[email protected]>:
>>>>> Hi Troels,
>>>>>
>>>>> I've now converted the target_functions.relax_fit.jacobian() function
>>>>> to be the Jacobian of the chi-squared function rather than the
>>>>> Jacobian of the exponential function.  This should match your
>>>>> specific_analyses.relax_disp.estimate_r2eff.func_exp_chi2_grad()
>>>>> function.  I mixed up the two because the Levenberg-Marquardt
>>>>> algorithm in minfx requires the Jacobian of the exponential, and it's
>>>>> been 8 years since I last derived and implemented a Jacobian.
>>>>>
>>>>> Regards,
>>>>>
>>>>> Edward
>>>>>
>>>>>
>>>>>
>>>>> On 28 August 2014 21:43,  <[email protected]> wrote:
>>>>>> Author: tlinnet
>>>>>> Date: Thu Aug 28 21:43:13 2014
>>>>>> New Revision: 25411
>>>>>>
>>>>>> URL: http://svn.gna.org/viewcvs/relax?rev=25411&view=rev
>>>>>> Log:
>>>>>> Reverted the logic, that the chi2 Jacobian should be used.
>>>>>>
>>>>>> Instead, the direct Jacobian exponential is used instead.
>>>>>>
>>>>>> When fitting with the estimated errors from the Direct Jacobian, the 
>>>>>> results are MUCH better, and comparable
>>>>>> to 2000 Monte-Carlo simulations.
>>>>>>
>>>>>> task #7822(https://gna.org/task/index.php?7822): Implement user function 
>>>>>> to estimate R2eff and associated errors for exponential curve fitting.
>>>>>>
>>>>>> Modified:
>>>>>>     trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>>>>>     trunk/test_suite/system_tests/relax_disp.py
>>>>>>     trunk/user_functions/relax_disp.py
>>>>>>
>>>>>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>>>>> URL: 
>>>>>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25411&r1=25410&r2=25411&view=diff
>>>>>> ==============================================================================
>>>>>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py        
>>>>>> (original)
>>>>>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py        Thu Aug 
>>>>>> 28 21:43:13 2014
>>>>>> @@ -90,7 +90,7 @@
>>>>>>      return jacobian_matrix_exp_chi2
>>>>>>
>>>>>>
>>>>>> -def estimate_r2eff_err(chi2_jacobian=True, spin_id=None, epsrel=0.0, 
>>>>>> verbosity=1):
>>>>>> +def estimate_r2eff_err(chi2_jacobian=False, spin_id=None, epsrel=0.0, 
>>>>>> verbosity=1):
>>>>>>      """This will estimate the R2eff and i0 errors from the covariance 
>>>>>> matrix Qxx.  Qxx is calculated from the Jacobian matrix and the 
>>>>>> optimised parameters.
>>>>>>
>>>>>>      @keyword chi2_jacobian: If the Jacobian derived from the chi2 
>>>>>> function, should be used instead of the Jacobian from the exponential 
>>>>>> function.
>>>>>>
>>>>>> Modified: trunk/test_suite/system_tests/relax_disp.py
>>>>>> URL: 
>>>>>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff
>>>>>> ==============================================================================
>>>>>> --- trunk/test_suite/system_tests/relax_disp.py (original)
>>>>>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 21:43:13 2014
>>>>>> @@ -2744,13 +2744,13 @@
>>>>>>          self.interpreter.minimise.execute(min_algor='Newton', 
>>>>>> constraints=False, verbosity=1)
>>>>>>
>>>>>>          # Estimate R2eff errors.
>>>>>> -        
>>>>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=False)
>>>>>> +        
>>>>>> self.interpreter.relax_disp.r2eff_err_estimate(chi2_jacobian=True)
>>>>>>
>>>>>>          # Run the analysis.
>>>>>>          relax_disp.Relax_disp(pipe_name=ds.pipe_name, 
>>>>>> pipe_bundle=ds.pipe_bundle, results_dir=result_dir_name, models=MODELS, 
>>>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, modsel=MODSEL)
>>>>>>
>>>>>>          # Verify the data.
>>>>>> -        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>>>> result_dir_name=result_dir_name, r2eff_estimate='direct')
>>>>>> +        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2')
>>>>>>
>>>>>>
>>>>>>      def test_estimate_r2eff_err_auto(self):
>>>>>> @@ -2849,7 +2849,7 @@
>>>>>>          relax_disp.Relax_disp(pipe_name=pipe_name, 
>>>>>> pipe_bundle=pipe_bundle, results_dir=result_dir_name, models=MODELS, 
>>>>>> grid_inc=GRID_INC, mc_sim_num=MC_NUM, exp_mc_sim_num=EXP_MC_NUM, 
>>>>>> modsel=MODSEL, r1_fit=r1_fit)
>>>>>>
>>>>>>          # Verify the data.
>>>>>> -        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>>>> result_dir_name=result_dir_name, r2eff_estimate='chi2')
>>>>>> +        self.verify_r1rho_kjaergaard_missing_r1(models=MODELS, 
>>>>>> result_dir_name=result_dir_name, r2eff_estimate='direct')
>>>>>>
>>>>>>
>>>>>>      def test_estimate_r2eff_err_methods(self):
>>>>>>
>>>>>> Modified: trunk/user_functions/relax_disp.py
>>>>>> URL: 
>>>>>> http://svn.gna.org/viewcvs/relax/trunk/user_functions/relax_disp.py?rev=25411&r1=25410&r2=25411&view=diff
>>>>>> ==============================================================================
>>>>>> --- trunk/user_functions/relax_disp.py  (original)
>>>>>> +++ trunk/user_functions/relax_disp.py  Thu Aug 28 21:43:13 2014
>>>>>> @@ -636,7 +636,7 @@
>>>>>>  uf.title_short = "Estimate R2eff errors."
>>>>>>  uf.add_keyarg(
>>>>>>      name = "chi2_jacobian",
>>>>>> -    default = True,
>>>>>> +    default = False,
>>>>>>      py_type = "bool",
>>>>>>      desc_short = "use of chi2 Jacobian",
>>>>>>      desc = "If the Jacobian derived from the chi2 function, should be 
>>>>>> used instead of the Jacobian from the exponential function."
>>>>>>
>>>>>>
>>>>>> _______________________________________________
>>>>>> relax (http://www.nmr-relax.com)
>>>>>>
>>>>>> This is the relax-commits mailing list
>>>>>> [email protected]
>>>>>>
>>>>>> To unsubscribe from this list, get a password
>>>>>> reminder, or change your subscription options,
>>>>>> visit the list information page at
>>>>>> https://mail.gna.org/listinfo/relax-commits
>>>>>
>>>>> _______________________________________________
>>>>> relax (http://www.nmr-relax.com)
>>>>>
>>>>> This is the relax-devel mailing list
>>>>> [email protected]
>>>>>
>>>>> To unsubscribe from this list, get a password
>>>>> reminder, or change your subscription options,
>>>>> visit the list information page at
>>>>> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to