HyukjinKwon commented on a change in pull request #34931:
URL: https://github.com/apache/spark/pull/34931#discussion_r774311345



##########
File path: python/pyspark/pandas/tests/test_dataframe.py
##########
@@ -5779,14 +5779,116 @@ def test_astype(self):
             psdf.astype({"c": float})
 
     def test_describe(self):
-        psdf = self.psdf
+        pdf, psdf = self.df_pair
+
+        # numeric columns
+        self.assert_eq(psdf.describe(), pdf.describe())
+        psdf.a += psdf.a
+        pdf.a += pdf.a
+        self.assert_eq(psdf.describe(), pdf.describe())
+
+        # string columns
+        psdf = ps.DataFrame({"A": ["a", "b", "b", "c"], "B": ["d", "e", "f", 
"f"]})
+        pdf = psdf.to_pandas()
+        self.assert_eq(psdf.describe(), pdf.describe().astype(str))
+        psdf.A += psdf.A
+        pdf.A += pdf.A
+        self.assert_eq(psdf.describe(), pdf.describe().astype(str))
+
+        # timestamp columns
+        psdf = ps.DataFrame(
+            {
+                "A": [
+                    pd.Timestamp("2020-10-20"),
+                    pd.Timestamp("2021-06-02"),
+                    pd.Timestamp("2021-06-02"),
+                    pd.Timestamp("2022-07-11"),
+                ],
+                "B": [
+                    pd.Timestamp("2021-11-20"),
+                    pd.Timestamp("2023-06-02"),
+                    pd.Timestamp("2026-07-11"),
+                    pd.Timestamp("2026-07-11"),
+                ],
+            }
+        )
+        pdf = psdf.to_pandas()
+        # NOTE: Set `datetime_is_numeric=True` for pandas:
+        # FutureWarning: Treating datetime data as categorical rather than 
numeric in `.describe` is deprecated
+        # and will be removed in a future version of pandas. Specify 
`datetime_is_numeric=True` to silence this
+        # warning and adopt the future behavior now.
+        # NOTE: Compare the result except percentiles, since we use 
approximate percentile
+        # so the result is different from pandas.
+        self.assert_eq(
+            psdf.describe().loc[["count", "mean", "min", "max"]],
+            pdf.describe(datetime_is_numeric=True).astype(str).loc[["count", 
"mean", "min", "max"]],
+        )
+
+        # String & timestamp columns
+        psdf = ps.DataFrame(
+            {
+                "A": ["a", "b", "b", "c"],
+                "B": [
+                    pd.Timestamp("2021-11-20"),
+                    pd.Timestamp("2023-06-02"),
+                    pd.Timestamp("2026-07-11"),
+                    pd.Timestamp("2026-07-11"),
+                ],
+            }
+        )
+        pdf = psdf.to_pandas()
+        self.assert_eq(
+            psdf.describe().loc[["count", "mean", "min", "max"]],
+            pdf.describe(datetime_is_numeric=True).astype(str).loc[["count", 
"mean", "min", "max"]],
+        )
+        psdf.A += psdf.A
+        pdf.A += pdf.A
+        self.assert_eq(
+            psdf.describe().loc[["count", "mean", "min", "max"]],
+            pdf.describe(datetime_is_numeric=True).astype(str).loc[["count", 
"mean", "min", "max"]],
+        )
+
+        # Numeric & timestamp columns
+        psdf = ps.DataFrame(
+            {
+                "A": [1, 2, 2, 3],
+                "B": [
+                    pd.Timestamp("2021-11-20"),
+                    pd.Timestamp("2023-06-02"),
+                    pd.Timestamp("2026-07-11"),
+                    pd.Timestamp("2026-07-11"),
+                ],
+            }
+        )
+        pdf = psdf.to_pandas()
+        pandas_result = pdf.describe(datetime_is_numeric=True)
+        pandas_result.B = pandas_result.B.astype(str)
+        self.assert_eq(
+            psdf.describe().loc[["count", "mean", "min", "max"]],
+            pandas_result.loc[["count", "mean", "min", "max"]],
+        )
+        psdf.A += psdf.A
+        pdf.A += pdf.A
+        pandas_result = pdf.describe(datetime_is_numeric=True)
+        pandas_result.B = pandas_result.B.astype(str)
+        self.assert_eq(
+            psdf.describe().loc[["count", "mean", "min", "max"]],
+            pandas_result.loc[["count", "mean", "min", "max"]],
+        )
+
+        # Empty DataFrame
+        psdf = ps.DataFrame(columns=["A", "B"])

Review comment:
       Can you also add a test with explicit type? e.g.)
   
   ```python
   >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [pd.Timestamp(1), 
pd.Timestamp(1), pd.Timestamp(1)]})
   >>> pdf[pdf.a != pdf.a]
   Empty DataFrame
   Columns: [a, b]
   Index: []
   >>> pdf[pdf.a != pdf.a].dtypes
   a             int64
   b    datetime64[ns]
   dtype: object
   ```




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org



---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to