zhengruifeng commented on code in PR #38468: URL: https://github.com/apache/spark/pull/38468#discussion_r1014559938
########## connector/connect/src/main/scala/org/apache/spark/sql/connect/service/SparkConnectStreamHandler.scala: ########## @@ -117,7 +126,70 @@ class SparkConnectStreamHandler(responseObserver: StreamObserver[Response]) exte responseObserver.onNext(response.build()) } - responseObserver.onNext(sendMetricsToResponse(clientId, rows)) + responseObserver.onNext(sendMetricsToResponse(clientId, dataframe)) + responseObserver.onCompleted() + } + + def processRowsAsArrowBatches(clientId: String, dataframe: DataFrame): Unit = { + val spark = dataframe.sparkSession + val schema = dataframe.schema + // TODO: control the batch size instead of max records + val maxRecordsPerBatch = spark.sessionState.conf.arrowMaxRecordsPerBatch + val timeZoneId = spark.sessionState.conf.sessionLocalTimeZone + + val rows = dataframe.queryExecution.executedPlan.execute() + var numBatches = 0L + + if (rows.getNumPartitions > 0) { + val batches = rows.mapPartitionsInternal { iter => + ArrowConverters + .toArrowBatchIterator(iter, schema, maxRecordsPerBatch, timeZoneId) + } + + val obj = new Object + + val processPartition = (iter: Iterator[(Array[Byte], Long, Long)]) => iter.toArray + + val resultHandler = (partitionId: Int, taskResult: Array[(Array[Byte], Long, Long)]) => + obj.synchronized { + var batchId = partitionId.toLong << 33 + taskResult.foreach { case (bytes, count, size) => + val response = proto.Response.newBuilder().setClientId(clientId) + val batch = proto.Response.ArrowBatch + .newBuilder() + .setBatchId(batchId) + .setRowCount(count) + .setUncompressedBytes(size) + .setCompressedBytes(bytes.length) + .setData(ByteString.copyFrom(bytes)) + .build() + response.setArrowBatch(batch) + responseObserver.onNext(response.build()) Review Comment: ok will update -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org --------------------------------------------------------------------- To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org For additional commands, e-mail: reviews-h...@spark.apache.org