pan3793 commented on code in PR #38468:
URL: https://github.com/apache/spark/pull/38468#discussion_r1016118342


##########
connector/connect/src/main/scala/org/apache/spark/sql/connect/service/SparkConnectStreamHandler.scala:
##########
@@ -117,10 +129,91 @@ class SparkConnectStreamHandler(responseObserver: 
StreamObserver[Response]) exte
       responseObserver.onNext(response.build())
     }
 
-    responseObserver.onNext(sendMetricsToResponse(clientId, rows))
+    responseObserver.onNext(sendMetricsToResponse(clientId, dataframe))
     responseObserver.onCompleted()
   }
 
+  def processRowsAsArrowBatches(clientId: String, dataframe: DataFrame): Unit 
= {
+    val spark = dataframe.sparkSession
+    val schema = dataframe.schema
+    // TODO: control the batch size instead of max records
+    val maxRecordsPerBatch = spark.sessionState.conf.arrowMaxRecordsPerBatch
+    val timeZoneId = spark.sessionState.conf.sessionLocalTimeZone
+
+    SQLExecution.withNewExecutionId(dataframe.queryExecution, 
Some("collectArrow")) {
+      val pool = 
ThreadUtils.newDaemonSingleThreadExecutor("connect-collect-arrow")
+      val tasks = collection.mutable.ArrayBuffer.empty[Future[_]]
+      val rows = dataframe.queryExecution.executedPlan.execute()
+
+      if (rows.getNumPartitions > 0) {
+        val batches = rows.mapPartitionsInternal { iter =>
+          ArrowConverters
+            .toArrowBatchIterator(iter, schema, maxRecordsPerBatch, timeZoneId)
+        }
+
+        val processPartition = (iter: Iterator[(Array[Byte], Long, Long)]) => 
iter.toArray
+
+        val resultHandler = (partitionId: Int, taskResult: Array[(Array[Byte], 
Long, Long)]) => {
+          if (taskResult.exists(_._1.nonEmpty)) {
+            // only send non-empty partitions
+            val task = pool.submit(new Runnable {
+              override def run(): Unit = {
+                var batchId = partitionId.toLong << 33
+                taskResult.foreach { case (bytes, count, size) =>
+                  val response = 
proto.Response.newBuilder().setClientId(clientId)
+                  val batch = proto.Response.ArrowBatch
+                    .newBuilder()
+                    .setBatchId(batchId)
+                    .setRowCount(count)
+                    .setUncompressedBytes(size)
+                    .setCompressedBytes(bytes.length)
+                    .setData(ByteString.copyFrom(bytes))
+                    .build()
+                  response.setArrowBatch(batch)
+                  responseObserver.onNext(response.build())

Review Comment:
   Things goes worse if the we decide to keep strict partition ordering. 
   
   Actually, Spark implemented `IndirectTaskResult` to support transfer task 
result from executor to driver through block manager, but currently it eagerly 
fetches and deserializes blocks to `DirectTaskResult` on `task-result-getter` 
thread pool. What if defer it to `JobWaiter#taskSucceeded`?



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to